
Implementing MLPs with Keras

Chapter 10

Today

• Building an Image Classifier Using the

Sequential API.

• Building a Regression MLP Using the

Sequential API.

Implementing MLPs with Keras
• Keras is TensorFlow’s high-level deep learning API.

• It allows you to build, train, evaluate, and execute all

sorts of neural networks.

• Keras used to support multiple backends, including

TensorFlow, PlaidML, Theano, and Microsoft Cognitive

Toolkit (CNTK), but since version 2.4, Keras is

TensorFlow-only

Building an MLP for Image Classification

• Data set:

– Fashion MNIST,

– It has (70,000) grayscale images of 28 × 28 pixels each, with 10

classes), the images represent fashion items rather

– A simple linear model reaches about 92% accuracy on Digits

MNIST, but only about 83% on Fashion MNIST.

Building an MLP for Image Classification

• How to create the model(ANN) using the

sequential API:

1. Build the neural network.

2. Compile the neural network.

3. Training and evaluating the neural

network.

Building an MLP for Image Classification

• Let’s load Fashion MNIST. It’s already shuffled and split

into a training set (60,000 images) and a test set (10,000

images), but we’ll hold out the last 5,000 images from the

training set for validation:

Building an MLP for Image Classification

Building an MLP for Image Classification

• To build the neural network:

OR

Sequential model. This is

the simplest kind of Keras

model for neural networks

that are just composed of a

single stack of layers

connected sequentially.

This is called the sequential

API.

Building an MLP for Image Classification

Compiling the model

If your Yi's are one-hot encoded, use

categorical_crossentropy. Examples (for a 3-

class classification): [1,0,0] , [0,1,0], [0,0,1]

But if your Yi's are integers, use

sparse_categorical_crossentropy. Examples

for above 3-class classification problem: [1] ,

[2], [3]
To measure the

accuracy during training

and evaluation, which is

why we set

metrics=["accuracy"].

Training and Evaluating the Model

The fit() method returns a

History object containing:

• The training parameters

(history.params).

• The list of epochs it went

through (history.epoch),

• A dictionary (history.history)

containing the loss and

extra metrics it measured at

the end of each epoch on

the training set and on the

validation set (if any)

Training and Evaluating the Model

• Learning curves: the mean training loss and accuracy measured over each

epoch, and the mean validation loss and accuracy measured at the end of each

epoch

Training and Evaluating the Model

To make predictions:

Building a Regression MLP Using the Sequential

API

Build

Compile

Train

Evaluate and predict

Building a Regression MLP Using the

Sequential API

• Adam optimizer is the extended version of stochastic gradient

descent which could be implemented in various deep learning

applications such as computer vision and natural language

processing in the future years.

• Adam was first introduced in 2014.

• The output layer has a single neuron and it uses no activation

function.

• The loss function is the mean squared error, the metric is the RMSE

Building a Regression MLP Using the

Sequential API

	Slide 1: Implementing MLPs with Keras
	Slide 2: Today
	Slide 3: Implementing MLPs with Keras
	Slide 4: Building an MLP for Image Classification
	Slide 5: Building an MLP for Image Classification
	Slide 6: Building an MLP for Image Classification
	Slide 7: Building an MLP for Image Classification
	Slide 8: Building an MLP for Image Classification
	Slide 9: Building an MLP for Image Classification
	Slide 10: Compiling the model
	Slide 11: Training and Evaluating the Model
	Slide 12: Training and Evaluating the Model
	Slide 13: Training and Evaluating the Model
	Slide 14: Building a Regression MLP Using the Sequential API
	Slide 15: Building a Regression MLP Using the Sequential API
	Slide 16: Building a Regression MLP Using the Sequential API

