KALAMAZOO

Implementing MLPs with Keras

Chapter 10

KALAMAZOO
COLLEGE

Today

* Building an Image Classifier Using the
Sequential API.

* Building a Regression MLP Using the
Sequential API.

KALAMAZOO
COLLEGE

Implementing MLPs with Keras

« Keras is TensorFlow’s high-level deep learning API.

« It allows you to build, train, evaluate, and execute all
sorts of neural networks.

« Keras used to support multiple backends, including
TensorFlow, PlaidML, Theano, and Microsoft Cognitive
Toolkit (CNTK), but since version 2.4, Keras is
TensorFlow-only

KALAMAZOO
COLLEGE

Building an MLP for Image Classification

« Data set:

— Fashion MNIST,

— It has (70,000) grayscale images of 28 x 28 pixels each, with 10
classes), the images represent fashion items rather

— A simple linear model reaches about 92% accuracy on Digits
MNIST, but only about 83% on Fashion MNIST.

Ankle boot T-shirt/top T-shirt/top Dress T-shirt/ftop Pullover Sneaker Pullover Sandal Sandal
‘ A ﬁ‘ S
T-shirt/top Ankle boot Sandal Sandal Sneaker Ankle boot Trouser T-shirt/top Shirt Coat
-
T 4=s<-~alTAD
Dress Trouser Coat Dress T-shirt/top Pullover Coat Coat

Sandal Dress Shirt i T- shlrt!top Bag Sandal Pullover Trouser Shirt

TR PLAN

KALAMAZOO
COLLEGE

Building an MLP for Image Classification

 How to create the model(ANN) using the
sequential API:

1. Build the neural network.
2. Complile the neural network.

3. Training and evaluating the neural
network.

KALAMAZOO
COLLEGE

Building an MLP for Image Classification

* Let's load Fashion MNIST. It's already shuffled and split
Into a training set (60,000 images) and a test set (10,000
images), but we’ll hold out the last 5,000 images from the
training set for validation:

import as

fashion _mnist = tf.keras.datasets.fashion mnist.load data()

(X _train full, y train full), (X test, y test) = fashion mnist
X train, y train = X train_ full[:- 1, y train fulll[:-]
X valid, y valid = X train_ full[- :], y train full[-]

KALAMAZOO
COLLEGE

Building an MLP for Image Classification

>>> X _train.shape
(55000, 28, 28)
>>> X _train.dtype
dtype('uint8')

X train, X valid, X test = X train / 255., X valid / 255., X test |

KALAMAZOO
COLLEGE

Building an MLP for Image Classification
* To build the neural network:

Sequential model. This is

the simplest kind of Keras
model for neural networks
that are just composed of a
single stack of layers
connected sequentially.
This is called the sequential
API.

tf.random.set seed(42)
model = tf.keras.Sequential() ==
model.add(tf.keras.layers.Input(shape=[28, 28]))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(, activation="relu"))
model.add(tf.keras.layers.Dense(, activation="relu"))
model.add(tf.keras.layers.Dense(10, activation="softmax"))

OR model = tf.keras.Sequential([
tf.keras.layers.Flatten(input shape=[28, 1,

tf.keras.layers.Dense(, activation="relu"),
tf.keras.layers.Dense(, activation="relu"),
tf.keras.layers.Dense(10, activation="softmax")

D

KALAMAZOO
COLLEGE

Building an MLP for Image Classification

>>> model.summary()
Model: "sequential"

Layer (type)

Param #

flatten (Flatten)
dense (Dense)
dense_1 (Dense)

dense_2 (Dense)

0

235500

30100

1010

Total params: 266,610
Trainable params: 266,610
Non-trainable params: 0

flatten_input input: [(None, 28, 28)]
InputLayer output: | [(None, 28, 28)]
flatten input: (None, 28, 28)
Flatten | output: (None, 784)
dense input: | (None, 784)
Dense | output: | (None, 300)
dense 1 input: (None, 300)
Dense output: | (None, 100)
dense 2 input: (None, 100)
Dense output: (None, 10)

KALAMAZOO
COLLEGE

Compiling the model

nodel. comptle(loss="sparse categorical crossentropy’,

' _n [
thlmlzer- Sgd ! mmt encoded, use \
- I I categorical_crossentropy. Examples (for a 3-
meltr.l.cs:[aCCU racy]) cle;[ssg classli_fication):t[l,%),/O]E, [0,1?:)], [g,0,1]3

But if your Yi's are integers, use
sparse_categorical_crossentropy. Examples
To measure the for above 3-class classification problem: [1] ,

accuracy during training G]’ [3] j

and evaluation, which is
why we set
metrics=["accuracy"].

\. W,

KALAMAZOO
COLLEGE

Training and Evaluating the Model

>>> history = model.fit(X_train, y_train, epochs=30,
validation_data=(X_valid, y_valid))

Epoch 1/30
1719/1719 [==============================] - 2s 989us/step

- loss: 0.7220 - sparse_categorical_accuracy: 0.7649

- val_loss: 0.4959 - val sparse_categorical_accuracy: 0.8332
Epoch 2/30
1719/1719 [==============================] - 25 964us/step

- loss: 0.4825 - sparse_categorical _accuracy: 0.8332

- val_loss: 0.4567 - val_sparse_categorical_accuracy: 0.8384
[...]
Epoch 30/30
1719/1719 [==============================] - 25 963us/step

- loss: 0.2235 - sparse_categorical_accuracy: 0.9200

- val_loss: 0.3056 - val_sparse_categorical_accuracy: 0.8894

KALAMAZOO
COLLEGE

Training and Evaluating the Model

« Learning curves: the mean training loss and accuracy measured over each
epoch, and the mean validation loss and accuracy measured at the end of each
epoch 10

e — = g == — O — B = G == = = B — = —

084,

---- |oss

021 -—=- sparse_categorical_accuracy
—— val_loss

—~— val sparse_categorical accuracy

e
——
——
-

0-0 1 1 T U U
0 5 10 15 20 25
Epoch

KALAMAZOO
COLLEGE

Training and Evaluating the Model

>>> model.evaluate(X_test, y_test)

313/313 [::=::=::=::=::=::=::=::=::=::=] - @S 626US/step

- loss: 0.3243 - sparse_categorical _accuracy: 0.8864
[0.32431697845458984, 0.8863999843597412]

>>> X_new = X_test[:3]
>>> y _proba = model.predict(X_new)
>>> y_proba.round(2)

array([[6. , 0. , 0. ,0. ,0. ,0.01,0. ,0.02,0. ,0
[0. , 0. ,0.99,0. ,0.01,0. ,0. ,0. ,0. ,0
. ,1. ,06. ,0. ,0. ,0. ,0. ,0. ,0. ,0

dtype=float32)

>>> import as

>>> y pred = y_proba.argmax(axis=-1)

>>> y pred

array([9, 2, 1])

>>> np.array(class_names)[y_pred]

array(['Ankle boot', 'Pullover', 'Trouser'], dtype='<U11")

>>> y new = y_test[:3]
>>> Yy _new
array([9, 2, 1], dtype=uint8)

KALAMAZOO
COLLEGE

Building a Regression MLP Using the Sequential
API

tf.random.set_seed(42)

norm_layer = tf.keras.layers.Normalization(input_shape=X_train.shape[1:])
model = tf.keras.Sequential([

norm_layer,

tf.keras.layers.Dense(50, activation="relu"),

tf.keras.layers.Dense(50, activation="relu"),
tf.keras.layers.Dense(50, activation="relu"),
tf.keras.layers.Dense(1)

<:::::::::§3()r71p)nea optinizer : tf.keras.opttmtzers:Adam(legrptng_ratezt)
— nodel. compile(Loss="nse", optinizer=optinizer, metrics:('RootheanSquaredtrror'])

norn Layer .adapt(X train)
nstory = nodel, FLE(X tratn, y tratn, epochs=20, m
validation data=(X valid, y valid))
@alu ate and predict mse_test, rmse_test = model.evaluate(X_test, y test)
P X _new = X_test[:3]
y_pred = model.predict(X_new)

D

KALAMAZOO
COLLEGE

Building a Regression MLP Using the
Sequential API

« Adam optimizer is the extended version of stochastic gradient
descent which could be implemented in various deep learning
applications such as computer vision and natural language
processing in the future years.

« Adam was first introduced in 2014.

« The output layer has a single neuron and it uses no activation
function.

« The loss function is the mean squared error, the metric is the RMSE

KALAMAZOO
COLLEGE

Building a Regression MLP Using the
Seq U entl al A PI normalization_input | input: | [(None, 8)]

Inputlayer output: | [(None, 8)]

l

normalization | input: | (None, 8)

Normalization | output: | (None, 8)

° model. summary() l

Model: "sequential 1" dense | input: | (None, 8)
Layer (type) Output Shape Param # Dense | output: | (None, 50)
normalization_2 (Normalizat (Mone, 8) 17 l
ion)

dense 1 | input: | (None, 50)
dense_4 (Dense) (None, 5@) 450 Dense | output: | (None, 50)
dense_5 (Dense) (None, 5@) 2550 l
dense 6 (Dense Mone, 5@ 2550 . -
6 () (» 50) dense_2 | input: | (None, 50)
dense_7 (Dense) (None, 1) 51 Dense | output: | (None, 50)

Total params: 5,618 l

Trainable params: 5,601 dense 3 | input: | (None, 50)

Non-trainable params: 17

Dense | output: | (None, 1)

KALAMAZOO
COLLEGE

	Slide 1: Implementing MLPs with Keras
	Slide 2: Today
	Slide 3: Implementing MLPs with Keras
	Slide 4: Building an MLP for Image Classification
	Slide 5: Building an MLP for Image Classification
	Slide 6: Building an MLP for Image Classification
	Slide 7: Building an MLP for Image Classification
	Slide 8: Building an MLP for Image Classification
	Slide 9: Building an MLP for Image Classification
	Slide 10: Compiling the model
	Slide 11: Training and Evaluating the Model
	Slide 12: Training and Evaluating the Model
	Slide 13: Training and Evaluating the Model
	Slide 14: Building a Regression MLP Using the Sequential API
	Slide 15: Building a Regression MLP Using the Sequential API
	Slide 16: Building a Regression MLP Using the Sequential API

