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Earth system models (ESMs) are our main tools for quantifying the physical state of the Earth and predicting how it might change 
in the future under ongoing anthropogenic forcing. In recent years, however, artificial intelligence (AI) methods have been 
increasingly used to augment or even replace classical ESM tasks, raising hopes that AI could solve some of the grand challenges 
of climate science. In this Perspective we survey the recent achievements and limitations of both process-based models and AI 
in Earth system and climate research, and propose a methodological transformation in which deep neural networks and ESMs 
are dismantled as individual approaches and reassembled as learning, self-validating and interpretable ESM–network hybrids. 
Following this path, we coin the term neural Earth system modelling. We examine the concurrent potential and pitfalls of neural 
Earth system modelling and discuss the open question of whether AI can bolster ESMs or even ultimately render them obsolete.

For decades, scientists have used mathematical equations to 
describe geophysical and climate processes and to construct 
deterministic computer simulations that allow for the analysis 

of such processes. Until recently, process-based models had been 
considered irreplaceable tools that helped us to understand the 
complex interactions in the coupled Earth system and provided 
the only tools with which to predict the Earth system’s response to 
anthropogenic climate change.

Earth system models (ESMs)1 combine process-based models 
of the different subsystems of the Earth system into an integrated 
numerical model that for a given state of the coupled system at time 
t yields a prediction of the system state for time t + 1. The individual 
model components, or modules, describe subsystems including the 
atmosphere, the oceans, the carbon cycle and other biogeochemi-
cal cycles, and radiation processes, as well as land surface and veg-
etation processes and marine ecosystems. These modules are then 
combined by a dynamic coupler to obtain a consistent state of the 
full system for each time step.

The inclusion of a vastly increasing number of processes, together 
with continuously rising spatial resolution, have led to the development 
of comprehensive ESMs to analyse and predict the state of the Earth 
system. From the First Assessment Report of the Intergovernmental 
Panel on Climate Change (IPCC) in 1990 to the Fifth Phase of the 
Climate Model Intercomparison Project (CMIP5)2 and the associated 
Fifth Assessment Report of the IPCC in 2014, the spatial resolution 
has increased from around 500 km to as high as 70 km. In accordance, 
the CMIP results show that over the course of two decades the models 
have greatly improved in their accuracy in reproducing crucial char-
acteristics of the Earth system, such as the evolution of global mean 
temperatures since instrumental data became available in the second 

half of the nineteenth century, or the average present-day spatial dis-
tribution of temperature or precipitation3,4.

The provocative thought that ESMs might lose their fundamen-
tal importance in the advent of novel artificial intelligence (AI) tools 
has sparked both a gold-rush feeling and caution in scientific com-
munities. On the one hand, deep neural networks have been devel-
oped that complement and aim to match the skill of process-based 
models in various applications, ranging from numerical weather 
prediction to climate research. On the other hand, most neural 
networks are trained for isolated applications under simplified 
conditions and lack true process knowledge. Regardless, the daily 
increasing data streams from Earth system observations (ESOs), 
increasing computational resources, and the availability and acces-
sibility of powerful AI tools—particularly in machine learning 
(ML)—have led to numerous innovative developments that aim to 
resolve persistent shortcomings of current ESMs.

In the following, we survey the current state, recent achieve-
ments and recognized limitations of both process-based modelling 
and AI in Earth and climate research. On the basis of this survey, 
we draw an overview of an imminent and profound methodologi-
cal transformation, hereafter named neural Earth system modelling 
(NESYM), that aims for a deep and interpretable integration of AI 
into Earth system modelling. We discuss emerging challenges of 
this approach and highlight the necessity of new transdisciplinary 
collaborations between the involved communities.

Overview of Earth system modelling and ESOs
For some parts of the Earth system, the primitive physical equations 
of motion are known explicitly, such as the Navier–Stokes equa-
tions that describe the fluid dynamics of the atmosphere and oceans  
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(Fig. 1). In practice, it is impossible to numerically resolve all rel-
evant scales of the dynamics and approximations have to be made. 
For example, the fluid dynamical equations for the atmosphere 
and oceans are integrated on discrete spatial grids, and all pro-
cesses that operate below the grid resolution have to be param-
eterized to assure a closed description of the system. Since the 
multiscale nature of the dynamics of geophysical fluids implies 
that the sub-grid-scale processes interact with the larger scales 
that are resolved by the model, (stochastic) parameterization of 
sub-grid-scale processes is a highly non-trivial, yet unavoidable, 
part of climate modelling5–7.

For other parts of the Earth system, primitive equations of motion, 
such as the Navier–Stokes equations, do not exist. Essentially, this is 
due to the complexity of the Earth system, in which many phenom-
ena that emerge at a macroscopic level are not easily deducible from 
microscopic scales that may or may not be well understood. A typi-
cal example is given by ecosystems and the physiological processes 
governing the vegetation that covers vast parts of the land surface, 
as well as their interactions with the atmosphere, the carbon cycle 
and other geochemical cycles. Approximations in terms of param-
eterizations of potentially crucial processes must also be made for 
these cases.

Regardless of the specific process, such parameterizations induce 
free parameters in ESMs for which suitable values have to be found 
empirically. The size of state-of-the-art ESMs mostly prohibits sys-
tematic calibration methods such as, for example, the ones based on 
Bayesian inference, and the models are therefore often tuned manu-
ally. The quality of the calibration, as well as the overall accuracy 
of the model, can only be assessed with respect to relatively sparse 
observations of the last 170 years, at most, and there is no way to 
assess the models’ skill in predicting future climate conditions8.  

Although necessary, parameterizations can cause biases or struc-
tural model errors. The example of the discretized spatial grid sug-
gests that the higher the spatial resolution of an ESM, the smaller 
the potential errors. Likewise, it is expected that the models’ repre-
sentation of the Earth system will become more accurate the more 
processes are resolved explicitly.

Despite the tremendous success of ESMs, persistent problems 
and uncertainties remain:

	1.	 A crucial quantity for the evaluation of ESMs is the equilib-
rium climate sensitivity, defined as the amount of equilibrium 
global mean temperature increase that results from an instan-
taneous doubling of atmospheric CO2 (ref. 9). There remains 
a large equilibrium climate sensitivity range in current ESMs. 
From CMIP5 to CMIP6, the likely equilibrium climate sensitiv-
ity range has widened from 2.1–4.7 °C to 1.8–5.6 °C (refs. 10,11). 
Reducing these uncertainties, and hence the uncertainties of 
future climate projections, is one of the key challenges in the 
development of ESMs.

	2.	 Both theoretical considerations and palaeoclimate data sug-
gest that several subsystems of the Earth system can abruptly 
change their state in response to gradual changes in forcing12,13. 
There is concern that current ESMs will not be capable of pre-
dicting future abrupt climate changes, because the instrumental 
era of less than two centuries has not experienced comparable 
transitions, and model validation against palaeoclimate data for 
such events remains impossible due to the length of the rele-
vant timescales14. In an extensive search, many relatively abrupt 
transitions have been identified in future projections of CMIP5 
models15, but due to the nature of these rare, high-risk events, 
the accuracy of ESMs in predicting them remains untested.

Poorly known laws
Poorly known parameters

(ecosystems, the carbon cycle and so on)

Well-known laws
Poorly known parameters

(oceanic convection,
ice sheet dynamics and so on)

Well-known laws
Well-known parameters

(parts of the atmosphere and so on)

Energy flux

Stochastic wind
Extreme events

Seasonal forcing cycle

Carbon release

Fig. 1 | Symbolic representation of Earth system components in terms of knowledge clusters. Arrows indicate exemplary exchange of information 
between the clusters in terms of geophysical processes and coupling mechanisms. ML can take over different tasks depending on the cluster 
application; for example, data exploration and analysis in case of poor process knowledge (green cluster), ESM enhancement by improving insufficient 
parameterizations and other simplifications in process-based models (blue cluster) or emulation and acceleration of well-understood process-based 
simulations (orange cluster). Similarly, ML can be applied to coupling mechanisms and interaction processes (arrows), utilizing adjacent clusters as 
training data pools.
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	3.	 Current ESMs are not yet suitable for assessing the efficacy or 
the environmental impact of CO2 removal techniques, which 
are considered key mitigation options in pathways realizing the 
Paris Agreement16. Furthermore, ESMs are unable to adequate-
ly represent key environmental processes such as the carbon cy-
cle, water and nutrient availability or interactions between land 
use and climate. This can impact the usefulness of land-based 
mitigation options that rely on actions such as biomass en-
ergy with carbon capture and storage or nature-based climate 
solutions17,18.

	4.	 The distributions of time series encoding Earth system dy-
namics typically exhibit heavy tails. Extreme events such as 
heat waves and droughts—and extreme precipitation events 
and associated floods—have always caused tremendous 
socio-economic damage. With ongoing anthropogenic climate 
change, such events are projected to become even more severe, 
and the attribution of extremes poses another outstanding chal-
lenge in Earth system science19. Although current ESMs are 
very skilful in predicting average values of climatic quantities, 
there remains room for improvement in representing extremes.

In addition to the possible solutions to these fundamental 
challenges, improvements of the overall accuracy of ESMs can be 
expected from more extensive and more systematic integration of 
the process-based numerical models with observational data. ESOs 
are central to ESMs, serving a multitude of purposes; they are used 
to evaluate and compare process-based model performance, to 
generate model parameters and initial model states or as boundary 
forcings of ESMs20,21. ESOs are also used to directly influence the 
model output by either tuning or nudging parameters that describe 
unmodelled processes, or by the more sophisticated methods of data 
assimilation that alter the model’s state variables to bring the model 
output in better agreement with the observations22. Gradient-based 
optimization, as in four-dimensional variational schemes, is the 
current state of the art for efficiency and accuracy, but requires 
time-consuming design and implementation of adjoint calcula-
tion routines tailored to each model. Ensemble-based Kalman filter 
schemes are gradient-free but produce unphysical outputs and rely 
on strong statistical assumptions that are often unsatisfied, lead-
ing to biases and overconfident predictions23. The main problems 
of contemporary ESM data assimilation are (1) nonlinear dynam-
ics and non-Gaussian error budgets in combination with the high 
dimensionality of many ESM components24–26 and (2) selecting 
appropriate constraints on the governing processes over the differ-
ent spatiotemporal scales found in coupled systems 27,28.

ESOs cover a wide range of spatiotemporal scales and types, 
ranging from a couple of centimetres to tens of thousands of kilo-
metres, and from seconds and decades to millennia. The types of 
observation range from in situ measurements of irregular times and 
spaces to global satellite-based data fields. Yet, the available obser-
vational data pool still contains large gaps in time and space that 
prevent a holistic observation-driven picture of the coupled Earth 
system being built as a result of insufficient data resolution, too 
short observation time periods and largely unobserved compart-
ments of Earth systems such as the abyssal oceans. The combination 
of these complex characteristics renders ESOs both challenging and 
particularly interesting for AI applications.

From ML-based data exploration towards learning physics
In contrast to other research branches29–32, the usage of ML in Earth 
and climate sciences is still in its infancy. Whereas current ML 
applications are mostly found in explorative studies and are still 
far away from operational usage, profound impact on research as 
well as on the supercomputing industry is expected 33. A key obser-
vation is that ML concepts from computer vision and automated 
image analysis can be isomorphically transferred to ESO imagery 

and time series34,35. Pioneering studies demonstrated the feasibil-
ity of ML for remote sensing data analysis, classification tasks and 
parameter inversion as early as the 1990s36–39, and climate–model  
emulation in the early 2000s40. The figurative Cambrian explo-
sion of AI techniques in Earth and climate sciences, however, only  
began in the past 5 years and will rapidly continue throughout the 
coming decades.

ML has been applied across various spatial and temporal 
scales, ranging from short-term regional weather prediction to 
Earth-spanning climate phenomena. Considerable progress has 
been made in developing purely data-driven weather prediction 
networks, aiming to explore alternative approaches to process-based 
model forecasts41–43 or to emulate and accelerate computationally 
demanding components of weather forecasting systems such as 
the parameterization of gravity wave drag44 and the simulation of 
cloud processes45. However, current global data-driven ML weather 
forecasts operate on much lower resolutions than state-of-the-art 
process-based models46 and the lack of available training data will 
probably prevent a closure of this gap in the near future47. Yet, 
ML for emulation and acceleration tasks could play an even more 
important role in this context (orange knowledge cluster in Fig. 1), 
particularly during the advent of exascale computing48 and when the 
related computational challenges and bottlenecks are addressed49. 
ML contributed to the pressing need to improve the predictability of 
natural hazards, for instance, by uncovering global extreme-rainfall 
teleconnections50 and by improving long-term forecasts of the El 
Niño/Southern Oscillation51,52. ML-based image filling techniques 
were used to reconstruct missing climate information, allowing pre-
vious global temperature records to be corrected53. Furthermore, 
ML was applied to analyse climate data sets to extract specific 
forced signals from natural climate variability54,55, for example, or 
to predict clustered weather patterns56. In these applications, the 
ML tools function as highly specialized agents that help to uncover 
and categorize patterns in an automated way, which is particu-
larly useful for observable processes that are only poorly described 
through physical laws or parameterizations (green knowledge clus-
ter in Fig. 1). A key methodological advantage of ML in compari-
son with covariance-based spatial analysis lies in the possibility of 
mapping nonlinear processes57,58. At the same time, such trained 
neural networks lack actual physical process knowledge, as they 
solely function through identifying and generalizing statistical rela-
tions by minimizing predefined loss measures for a specific task59. 
Consequently, research on ML in Earth and climate science differs 
fundamentally from the previously described efforts of advancing 
ESMs in terms of methodological development and applicability.

Concepts of using ML not only for physics-blind data analyses 
but also as surrogates and methodological extensions for ESMs have 
only recently started to take shape60. Scientists started pursuing the 
aim of ML methods learning aspects of Earth and climate physics, 
or at least plausibly relating cause and effect. The combination of 
ML with process-based modelling is the essential distinction from 
previous ESO data exploration (blue knowledge cluster in Fig. 1). 
Lifting ML from purely diagnosis-driven usage towards the predic-
tion of geophysical processes will also be crucial to aid in climate 
change research and the development of mitigation strategies61.

Following this reasoning, ML methods can be trained with 
process-based model data to inherit a specific geophysical causa-
tion or even emulate and accelerate entire forward simulations. For 
instance, ML has been used in combination with ESMs and ESOs 
to invert space-borne oceanic magnetic field observations to deter-
mine the global ocean heat content62. Similarly, a neural network 
has been trained with a continental hydrology model to recover 
high-resolution terrestrial water storage from satellite gravimetry63. 
ML plays an important role in upscaling unevenly distributed car-
bon flux measurements to improve global carbon monitoring sys-
tems64. The eddy covariance technique was combined with ML to 
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measure the net ecosystem exchange of CO2 between ecosystems 
and the atmosphere, offering a unique opportunity to study eco-
system responses to climate change65. ML has successfully been 
applied in representing sub-grid-scale processes and other param-
eterizations of ESMs, providing that sufficient training data were 
available. As such, neural networks were applied to approximate 
turbulent processes in ocean models66 and atmospheric sub-grid 
processes in climate models67. Here, substantial computational sav-
ings could be achieved44,45, freeing up resources that in turn could 
be used to improve the model simulations, for example, by raising 
ensemble sizes or improve the resolution of the numerical model. 
Several studies highlight the potential for ML-based parameteriza-
tion schemes68–72, helping step-by-step to gradually remove numeri-
cal and human-induced simplifications and other biases of ESMs73. 
Nevertheless, most ML parameterization schemes are still applied 
under idealized conditions such as coarse model resolution, sim-
plified physics or reduced prognostic model variables. Transferring 
and testing these achievements on more complex ESM configura-
tions remains an ongoing and open challenge74.

Although some well-trained ML tools and simple hybrids have 
shown higher predictive power than traditional process-based 
models, only the surface of new possibilities, but also of new scien-
tific challenges, has been scratched. So far, ML, ESMs and ESO have 
largely been independent tools. Yet, we have reached the under-
standing that applications of physics-aware ML and model–net-
work hybrids offer huge benefits by filling up niches where purely 
process-based models persistently lack reliability75.

Fusion of process-based models and AI
The idea of hybrids of process-based and ML models is not new76, 
but an understanding of how ML can enhance process-based mod-
elling has evolved following the recent advances. The long-term goal 
will be to consistently integrate the recently discovered advantages 
of ML into the already decade-long source of process knowledge in 
Earth system science (Fig. 2). However, this evolution does not come 
without methodological caveats, which need to be investigated care-
fully. For the sake of comparability, we distinguish between weakly 
coupled NESYM hybrids (in which an ESM or AI technique benefits 
from information from the respective other) and strongly coupled 
NESYM hybrids (in which fully coupled model–network combina-
tions dynamically exchange information).

The emergent development of weak hybrids is predominantly 
driven by the aim of resolving the previously described ESM limi-
tations, particularly unresolved and sub-grid-scale processes (left 
branch of Fig. 2). Neural networks can emulate such processes after 
careful training with simulation data from a high-resolution model 
that resolves the processes of interest, or with relevant ESO data. 
The next methodological milestone will be the integration of such 
trained neural networks into ESMs for operational usage. The first 
tests have indicated that the choice of the AI technique (for exam-
ple, neural networks versus random forests) seems to be crucial for 
the implementation of learning parameterization schemes, as they 
can greatly diminish the ESM’s numerical stability77. Thus, it is not 
only important to identify how neural networks can be trained to 
resolve ESM limitations, but also how such ML-based schemes can 
be stabilized in the model physics context and how their effect on 
the process-based simulation can be evaluated and interpreted78. 
The limitations of ML-based parameterization approaches can 
vary widely for different problems or utilized models and, conse-
quently, should be considered for each learning task individually79. 
Nevertheless, several ideas have been proposed to stabilize ML 
parameterizations, for example, by enforcing physical consistency 
through customized loss functions in neural networks and spe-
cific network architectures71,80 or by optimizing the high-resolution 
model training data72. In addition, an ESM blueprint has been pro-
posed in which learning parameterizations can be targeted through 

searching for an optimal fit of statistical measures between ESMs, 
observations and high-resolution simulations81. Although this is 
not strictly applying ML, the approach is well suited to exploring 
parameterizations suitable for smooth climate solutions, avoiding 
the problems of the ensemble-based Kalman filter techniques. In 
such a context, further efforts have been made to enhance an ESM 
not with ML directly, but in combination with a data assimilation 
system 22. For instance, emulating a Kalman filter scheme with ML 
has been investigated82,83, an ML-based estimation of atmospheric 
forcing uncertainties used as error covariance information in data 
assimilation has been proposed84 and ML for nudged hindcasts74, 
as well as further types of Kalman–network hybrid85,86. Despite the 
demonstrated potential for combining data assimilation and ML, it 
should be highlighted that many current challenges of data assimi-
lation need to be solved for respective ML approaches as well, such 
as robust quantification of model and observation uncertainties and 
the optimal use of sparse observations87.

In the second class of weak hybrid, the model and AI tasks are 
transposed such that the information flow is directed from the 
model towards the AI tool (right branch of Fig. 2). Here, neural 
networks are trained directly with model state variables, their tra-
jectories or with more abstract information such as seasonal sig-
nals, interannual cycles or coupling mechanisms (knowledge cluster 
connections in Fig. 1). The goal of the ML application might not 
only be model emulation but also inverting nonlinear geophysical 
processes62, learning geophysical causation88 or predicting extreme 
events89,90. In addition to these inference and generalization tasks, a 
key question in this subdiscipline is whether a neural network can 
learn to outperform the utilized process-based trainer model in 
terms of physical consistency or predictive power. ESOs play a vital 
role in this context, as they can serve as additional training con-
straints for neural network training, allowing the network to build 
independent self-evaluation measures63.

These examples generally work well for validation and pre-
diction scenarios within the given training data distribution. 
Out-of-distribution samples, in contrast, pose a huge challenge for 
supervised learning, which renders the ‘learning from the past’ prin-
ciple possibly ill-suited to prediction tasks in NESYM. Because of 
both the naturally and anthropogenically induced non-stationarity 
of the climate and Earth system, it will be very challenging—and 
in many cases impossible—for purely data-driven AI methods to 
perform accurate climate projections on their own. Nevertheless, 
some hope for purely data-driven AI approaches may remain for 
problems for which it can be convincingly argued that, for instance, 
the data distributions for colder-climate training conditions and 
warmer-climate projections overlap. But in practice it will be hard 
to guarantee that the unseen domains of the data distributions cor-
responding to a warmer climate are not relevant for a given process 
under study. Moreover, in specific cases the scales of the processes 
under study may to a first approximation be separable from the 
scales relevant in the context of anthropogenic climate change; 
guaranteeing this in practice, however, will again be very difficult.

Overcoming the overall limitations posed by the non-stationarity 
of the climate system requires a deeper holistic integration in terms 
of strongly coupled hybrids and the consideration of other, less 
constrained training techniques such as unsupervised training91 
and generative AI methods69,92,93. For example, the problems of 
pure AI methods with non-stationary training data can be atten-
uated by combining them with physical equations describing the 
changing energy balance of the Earth system due to anthropogenic 
greenhouse-gas emissions94. A key distinction of strongly coupled 
hybrids is that the ML component can be further improved by 
continued training. As such, the dynamic exchange of information 
means that the ML part is not only repeatedly called after being 
trained for usage in a weak hybrid, but can further evolve on the 
basis of the current model state, newly available observations and 
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so on. In addition, first steps towards physics-informed AI have 
been made by the ML-based and data-driven discovery of physical 
equations95 and by the implementation of neural partial differential 
equations96,97 in the context of climate modelling98.

Continuous development of the methodological fusion process 
will allow hybrids of neural networks, ESMs and ESOs that dynami-
cally exchange information to be built. ESMs will soon use output 
from supervised and unsupervised neural networks to optimize their 
physical consistency and, in turn, feed back improved information 
content to the ML component. ESOs form another core element and 
function as the constraining ground truth of the AI-infused process 
prediction. Similar to the adversarial game of generative networks99, 
or coupling mechanisms in an ESM100, strongly coupled NESYM 
hybrids will also require innovative interfaces that control the 
exchange of information that are as yet unavailable. As the methodi-
cal range of weak and strong hybrids is too large to be summarized 
through a single overarching definition, we formulate key charac-
teristics and define goals of NESYM:
	1.	 Hybrids can reproduce and predict out-of-distribution samples 

and extreme events
	2.	 Hybrids perform constrained and consistent simulations that 

obey physical conservation laws despite potential shortcomings 
of the hybrids’ individual components

	3.	 Hybrids include integrated adaptive measures for self-validation 
and self-correction

	4.	 NESYM allows replicability and interpretability

Whereas most studies implemented neural networks for ML in 
this context, NESYM includes all AI techniques that help to achieve 
these goals. The ultimate goal of NESYM is to help scientists 
improve the current forecast limits of geophysical processes and 
contribute towards understanding the Earth’s susceptible state in a 
changing climate. Consequently, it is not only the fusion of ESM and 

AI that will be a focus of research, but also AI interpretability and 
the resolution of the common notion of a black box.

Peering into the black box
ML has emerged as a set of methods based on the combination of 
statistics, applied mathematics and computer science, but it comes 
with a unique set of hurdles. Peering into the black box and explain-
ing the decision-making process of ML methods, termed explain-
able AI (XAI), is critical to the use of ML tools. In the physical 
sciences, adaptation of ML is hampered by a lack of interpretabil-
ity, particularly of supervised ML. In contrast, and in addition to 
XAI, there is the call for interpretable AI (IAI)—that is, building 
specifically interpretable ML models from the beginning, instead 
of explaining ML predictions through post-process diagnostics101.

Ensuring that what is ‘learned’ by the machine is physically trac-
table or causal, and not due to trivial coincidences102,103, is important 
before ML tools are used, for example, in an ESM setting targeted at 
decision-making. Thus, interpretability and explainability provides 
the user with trust in the ML output, improving its transparency. 
This is critical for the use of ML in the policy-relevant area of climate 
science, as society is making it increasingly clear that understand-
ing the source of AI predictive skill is of crucial importance104,105. 
By analysing the decision-making process, climate scientists will 
be able to better incorporate their own physical knowledge into 
the ML method, ultimately leading to greater confidence in predic-
tions. Perhaps least appreciated in geoscientific applications thus far 
is the use of IAI and XAI to discover new science103,106 and assist in 
theoretic advances107. For example, when an ML model is capable of 
making skilful predictions, XAI allows us to ask ‘what did it learn?’. 
In this way, ML models can act as investigative tools for discovery.

The power of XAI for climate, ocean and weather applications 
has very recently been demonstrated106,108–110. Tools for developing 
XAI models are referred to as additive feature attribution111. For 

Physical equation-driven modelling Data-driven ML

NESYM

Main tool for quantifying the Earth's
state under ongoing anthropogenic
forcing

Contains persistent error sources

Highly specialized agents that
uncover hidden patterns and

geophysical quantities

Lack of process knowledge

Process-based models and
neural networks will be coupled
as learning hybrid models

Physics-informed ML starts to
outperform traditional models

Successive research on XAI will make
hybrid models more physically interpretable

The advantages of process-based models are
combined those of ML models

ESO data

Available data pool for neural
network training environments

Ground truth for the validation of
process-based models

Fig. 2 | Successive stages of the fusion process of ESMs and AI towards NESYM. The left and right branches visualize the current efforts and goals for 
building weakly coupled hybrids (blue and yellow), which converge towards strongly coupled hybrids with support from XAI. More details of weak and 
strong hybrids are provided in the text.
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example, neural networks coupled with the XAI attribution method 
known as layerwise relevance propagation112,113 have revealed 
modes of variability within the climate system, sources of predict-
ability across a range of timescales and indicator patterns of climate 
change55,106. There is also evidence that XAI methods can be used to 
evaluate climate models against observations, identifying the most 
important climate model biases for the specific prediction task114. 
However, these methods are in their infancy and there is vast room 
for advancements in their application, making it explicitly appropri-
ate to employ them within the physical sciences103,110. In the context 
of the above, however, we emphasize that IAI and XAI approaches 
should go hand-in-hand with well-posed physical research hypoth-
eses. Also in this regard, we again highlight the importance of 
combining recent methods from AI with domain-specific physical 
understanding and the state of the art in process-based modelling.

Unsupervised ML can be intuitively IAI through the design of 
experiments. For example, applying clustering on closed model 
budgets of momentum ensures all relevant physics are represented, 
and can be interpreted in terms of the statistically dominant bal-
ances between terms115. Similarly, ‘equation driven’ ML can be used 
to determine the salient terms given an array of mathematical oper-
ations, and suggest interpretable sub-grid-scale parameterization 
developments on this basis66,95. In this manner, dominant physi-
cal mechanisms or equation terms can be determined, generating 
new knowledge in physics and beyond91,115,116. Knowledge of domi-
nant regimes can subsequently be used to engineer features for a 
well-posed XAI application where the source of predictive ML skill 
is transparent110. Adversarial learning has been an effective tool for 
generating super-resolution fields of atmospheric variables in cli-
mate models93. Furthermore, unsupervised ML approaches have 
been proposed for discovering and quantifying causal interdepen-
dencies and dynamical links inside a system, such as the Earth’s 
climate88,117. Another example of an ML application that can be 
termed IAI is equation discovery, for example using relevance vec-
tor machines, which has been applied for ocean eddy parameteriza-
tions95. It is also worth noting that a revolution of analysis tools has 
been called for to evaluate climate models, and ML is poised to be 
part of this change60,118,119.

Given the importance of both explainability and interpretability 
for improving ML generalization and scientific discovery, promot-
ing collaborations between climate and AI scientists can help to 
develop methods that are tailored to the field’s needs. This is not just 
an interesting exercise—it is essential for the proper use of AI for 
the development and use of NESYM. Earth and climate scientists 
can aid the development of consistent benchmarks that allow evalu-
ation of both stand-alone ML and hybrids in terms of geophysical 
consistency120. However, the help of the AI community is needed to 
resolve other recently highlighted ML pitfalls. For example, identify-
ing and avoiding shortcut learning121 in hybrid models, developing 
ESM concepts of adversarial examples and deep learning artifacts122, 
and developing additive feature attribution123 tools appropriate for 
physical applications such as within XAI110. Only through combined 
efforts and the continuous development of both ESMs and AI can 
NESYM emerge.

Concluding remarks
Our Perspective should not only be seen as the outline of a prom-
ising scientific pathway to achieving a better understanding of the 
Earth’s present and future state, but also as an answer to the recent 
call for collaboration from the AI community124. It can be seen from 
current applications of AI to Earth system and climate sciences that 
further exploration of the full potential and, equally, the limits of 
AI in this field are important. Yet, this line of research is a high-risk 
venture with many potential pitfalls and dead ends. At this point, 
there is no guarantee that AI will be the key to overcoming the 
grand challenges of Earth and climate sciences, some of which were 

described at the beginning of this Perspective. In its current stage, 
it also seems unlikely that AI alone can solve the climate predic-
tion problem. In the coming years, AI will necessarily need to rely 
on clear, physically meaningful research hypotheses, the geophysi-
cal determinism of process-based modelling and careful human 
evaluation against domain-specific knowledge. Along such lines, 
we believe that lasting progress beyond the current hype in applying 
AI to Earth system science will be possible. However, once we find 
solutions to the foreseeable limitations described above and can 
build interpretable and geophysically consistent AI tools, this next 
evolutionary step will seem much more likely.

Received: 12 January 2021; Accepted: 28 June 2021;  
Published online: 17 August 2021

References
	1.	 Prinn, R. G. Development and application of earth system models. Proc. 

Natl Acad. Sci. USA 110, 3673–3680 (2013).
	2.	 Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the 

experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
	3.	 IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. 

et al.) (Cambridge Univ. Press, 2013).
	4.	 Eyring, V. et al. Overview of the Coupled Model Intercomparison Project 

Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 
9, 1937–1958 (2016).

	5.	 Lin, J. W.-B. & Neelin, J. D. Considerations for stochastic convective 
parameterization. J. Atmos. Sci. 59, 959–975 (2002).

	6.	 Klein, R. Scale-dependent models for atmospheric flows. Annu. Rev. Fluid 
Mech. 42, 249–274 (2010).

	7.	 Berner, J. et al. Stochastic parameterization: toward a new view of weather 
and climate models. Bull. Am. Meteorol. Soc. 98, 565–588 (2017).

	8.	 Knutti, R. Should we believe model predictions of future climate change? 
Phil. Trans. R. Soc. A 366, 4647–4664 (2008).

	9.	 Knutti, R., Rugenstein, M. A. & Hegerl, G. C. Beyond equilibrium climate 
sensitivity. Nat. Geosci. 10, 727–736 (2017).

	10.	 Meehl, G. A. et al. Context for interpreting equilibrium climate sensitivity 
and transient climate response from the CMIP6 Earth system models.  
Sci. Adv. 6, eaba1981 (2020).

	11.	 Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. 
Geophys. Res. Lett. 47, e2019GL085782 (2020).

	12.	 Lenton, T. M. et al. Tipping elements in the earth’s climate system.  
Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

	13.	 Boers, N., Ghil, M. & Rousseau, D.-D. Ocean circulation, ice shelf, and sea 
ice interactions explain Dansgaard-Oeschger cycles. Proc. Natl Acad. Sci. 
USA 115, E11005–E11014 (2018).

	14.	 Valdes, P. Built for stability. Nat. Geosci. 4, 414–416 (2011).
	15.	 Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on 

Climate Change climate models. Proc. Natl Acad. Sci. USA 112, 
E5777–E5786 (2015).

	16.	 IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. 
et al.) (WMO, 2018); https://www.ipcc.ch/sr15

	17.	 IPCC Special Report on Climate Change and Land (eds Shukla, P. et al.) 
(IPCC, 2019); https://www.ipcc.ch/srccl/

	18.	 IPCC Special Report on the Ocean and Cryosphere in a Changing Climate 
(eds Pörtner, H. et al.) (IPCC, 2019); https://www.ipcc.ch/srocc/

	19.	 Otto, F. E. et al. Attribution of extreme weather events in Africa: a 
preliminary exploration of the science and policy implications. Climatic 
Change 132, 531–543 (2015).

	20.	 Balsamo, G. et al. Satellite and in situ observations for advancing global 
earth surface modelling: a review. Remote Sens. 10, 2038 (2018).

	21.	 Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 
1999–2049 (2020).

	22.	 Evensen, G. Data Assimilation: The Ensemble Kalman Filter  
(Springer, 2009).

	23.	 Houtekamer, P. L. & Zhang, F. Review of the ensemble Kalman filter for 
atmospheric data assimilation. Mon. Weather Rev. 144, 4489–4532 (2016).

	24.	 van Leeuwen, P. J. Nonlinear data assimilation in geosciences: an extremely 
efficient particle filter. Q. J. R. Meteorol. Soc. 136, 1991–1999 (2010).

	25.	 van Leeuwen, P. J., Künsch, H. R., Nerger, L., Potthast, R. & Reich, S. 
Particle filters for high-dimensional geoscience applications: a review. Q. J. 
R. Meteorol. Soc. 145, 2335–2365 (2019).

	26.	 Vetra-Carvalho, S. et al. State-of-the-art stochastic data assimilation methods 
for high-dimensional non-Gaussian problems. Tellus A 70, 1–43 (2018).

	27.	 Penny, S. G. et al. Strongly coupled data assimilation in multiscale media: 
experiments using a quasi-geostrophic coupled model. J. Adv. Model. Earth 
Syst. 11, 1803–1829 (2019).

Nature Machine Intelligence | VOL 3 | August 2021 | 667–674 | www.nature.com/natmachintell672

https://www.ipcc.ch/sr15
https://www.ipcc.ch/srccl/
https://www.ipcc.ch/srocc/
http://www.nature.com/natmachintell


PerspectiveNAturE MAchInE IntEllIgEncE

	28.	 Browne, P. A., de Rosnay, P., Zuo, H., Bennett, A. & Dawson, A. Weakly 
coupled ocean-atmosphere data assimilation in the ECMWF NWP system. 
Remote Sens. 11, 234 (2019).

	29.	 Voulodimos, A., Doulamis, N., Doulamis, A. & Protopapadakis, E. Deep 
learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 
7068349 (2018).

	30.	 Brown, T. B. et al. Language models are few-shot learners. Preprint at 
https://arxiv.org/abs/2005.14165 (2020).

	31.	 Loh, E. Medicine and the rise of the robots: a qualitative review of recent 
advances of artificial intelligence in health. BMJ Lead. 2, 59–63 (2018).

	32.	 Girasa, R. in Artificial Intelligence as a Disruptive Technology 3–21 (Springer, 
2020).

	33.	 Bauer, P. et al. The digital revolution of Earth-system science. Nat. Comput. 
Sci. 1, 104–113 (2021).

	34.	 Lary, D. J., Alavi, A. H., Gandomi, A. H. & Walker, A. L. Machine learning 
in geosciences and remote sensing. Geosci. Front. 7, 3–10 (2016).

	35.	 Salcedo-Sanz, S. et al. Machine learning information fusion in Earth 
observation: a comprehensive review of methods, applications and data 
sources. Inf. Fusion 63, 256–272 (2020).

	36.	 Dawson, M., Olvera, J., Fung, A. & Manry, M. Inversion of surface 
parameters using fast learning neural networks. In Proc. IGARSS ’92 
International Geoscience and Remote Sensing Symposium Vol. 2, 910–912 
(IEEE, 1992); http://ieeexplore.ieee.org/document/578294

	37.	 Miller, D. M., Kaminsky, E. J. & Rana, S. Neural network classification of 
remote-sensing data. Comput. Geosci. 21, 377–386 (1995).

	38.	 Serpico, S. B., Bruzzone, L. & Roli, F. An experimental comparison of 
neural and statistical non-parametric algorithms for supervised 
classification of remote-sensing images. Pattern Recogn. Lett. 17, 1331–1341 
(1996).

	39.	 Hsieh, W. W. & Tang, B. Applying neural network models to prediction and 
data analysis in meteorology and oceanography. Bull. Am. Meteorol. Soc. 79, 
1855–1870 (1998).

	40.	 Knutti, R., Stocker, T. F., Joos, F. & Plattner, G. K. Probabilistic climate 
change projections using neural networks. Clim. Dynam. 21, 257–272 
(2003).

	41.	 Arcomano, T. et al. A machine learning-based global atmospheric forecast 
model. Geophys. Res. Lett. 47, e2020GL087776 (2020).

	42.	 Weyn, J. A., Durran, D. R. & Caruana, R. Can machines learn to predict 
weather? Using deep learning to predict gridded 500-hPa geopotential 
height from historical weather data. J. Adv. Model. Earth Syst. 11, 
2680–2693 (2019).

	43.	 Weyn, J. A., Durran, D. R. & Caruana, R. Improving data-driven global 
weather prediction using deep convolutional neural networks on a cubed 
sphere. J. Adv. Model. Earth Syst. 12, e2020MS002109 (2020).

	44.	 Chantry, M., Hatfield, S., Duben, P., Polichtchouk, I. & Palmer, T. Machine 
learning emulation of gravity wave drag in numerical weather forecasting. 
Preprint at https://arxiv.org/abs/2101.08195 (2021).

	45.	 Gettelman, A. et al. Machine learning the warm rain process. J. Adv. Model. 
Earth Syst. 13, e2020MS002268 (2021).

	46.	 Rasp, S. & Thuerey, N. Data-driven medium-range weather prediction with 
a Resnet pretrained on climate simulations: a new model for WeatherBench. 
J. Adv. Model. Earth Syst. 13, e2020MS002405 (2021).

	47.	 Palmer, T. A vision for numerical weather prediction in 2030. Preprint at 
https://arxiv.org/abs/2007.04830 (2020).

	48.	 Neumann, P. et al. Assessing the scales in numerical weather and climate 
predictions: will exascale be the rescue? Phil. Trans. R. Soc. A 377, 
20180148 (2019).

	49.	 Kurth, T. et al. Exascale deep learning for climate analytics. In SC18: 
International Conference for High Performance Computing, Networking, 
Storage and Analysis 649–660 (IEEE, 2018).

	50.	 Boers, N. et al. Complex networks reveal global pattern of extreme-rainfall 
teleconnections. Nature 566, 373–377 (2019).

	51.	 Ham, Y.-g, Kim, J.-h & Luo, J.-j Deep learning for multi-year ENSO 
forecasts. Nature 573, 568–572 (2019).

	52.	 Yan, J., Mu, L., Wang, L., Ranjan, R. & Zomaya, A. Y. Temporal 
convolutional networks for the advance prediction of ENSO. Sci. Rep. 10, 
8055 (2020).

	53.	 Kadow, C., Hall, D. M. & Ulbrich, U. Artificial intelligence reconstructs 
missing climate information. Nat. Geosci. 13, 408–413 (2020).

	54.	 Barnes, E. A., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C. & Anderson, D. 
Viewing forced climate patterns through an AI lens. Geophys. Res. Lett. 46, 
13389–13398 (2019).

	55.	 Barnes, E. A. et al. Indicator patterns of forced change learned by an 
artificial neural network. J. Adv. Model. Earth Syst. 12, e2020MS002195 
(2020).

	56.	 Chattopadhyay, A., Hassanzadeh, P. & Pasha, S. Predicting  
clustered weather patterns: a test case for applications of convolutional 
neural networks to spatio-temporal climate data. Sci. Rep. 10,  
1317 (2020).

	57.	 Ramachandran, P., Zoph, B. & Le, Q. V. Searching for activation functions. 
Preprint at https://arxiv.org/abs/1710.05941 (2017).

	58.	 Lu, Z., Hunt, B. R. & Ott, E. Attractor reconstruction by machine learning. 
Chaos 28, 061104 (2018).

	59.	 Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations 
by back-propagating errors. Nature 323, 533–536 (1986).

	60.	 Reichstein, M. et al. Deep learning and process understanding for 
data-driven earth system science. Nature 566, 195–204 (2019).

	61.	 Huntingford, C. et al. Machine learning and artificial intelligence  
to aid climate change research and preparedness. Environ. Res. Lett. 14, 
124007 (2019).

	62.	 Irrgang, C., Saynisch, J. & Thomas, M. Estimating global ocean heat content 
from tidal magnetic satellite observations. Sci. Rep. 9, 7893 (2019).

	63.	 Irrgang, C., Saynisch-Wagner, J., Dill, R., Boergens, E. & Thomas, M. 
Self-validating deep learning for recovering terrestrial water storage from 
gravity and altimetry measurements. Geophys. Res. Lett. 47, e2020GL089258 
(2020).

	64.	 Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: 
synthesis and evaluation of the fluxcom approach. Biogeosciences 17, 
1343–1365 (2020).

	65.	 Tramontana, G. et al. Partitioning net carbon dioxide fluxes into 
photosynthesis and respiration using neural networks. Glob. Change Biol. 
26, 5235–5253 (2020).

	66.	 Bolton, T. & Zanna, L. Applications of deep learning to ocean data 
inference and subgrid parameterization. J. Adv. Model. Earth Syst. 11, 
376–399 (2019).

	67.	 Rasp, S., Pritchard, M. S. & Gentine, P. Deep learning to represent subgrid 
processes in climate models. Proc. Natl Acad. Sci. 115, 9684–9689 (2018).

	68.	 O’Gorman, P. A. & Dwyer, J. G. Using machine learning to parameterize 
moist convection: potential for modeling of climate, climate change, and 
extreme events. J. Adv. Model. Earth Syst. 10, 2548–2563 (2018).

	69.	 Gagne, D. J., Christensen, H. M., Subramanian, A. C. & Monahan, A. H. 
Machine learning for stochastic parameterization: generative adversarial 
networks in the Lorenz ’96 model. J. Adv. Model. Earth Syst. 12, 
e2019MS001896 (2020).

	70.	 Han, Y., Zhang, G. J., Huang, X. & Wang, Y. A moist physics 
parameterization based on deep learning. J. Adv. Model. Earth Syst. 12, 
e2020MS002076 (2020).

	71.	 Beucler, T., Pritchard, M., Gentine, P. & Rasp, S. Towards 
physically-consistent, data-driven models of convection. Preprint at  
http://arxiv.org/abs/2002.08525 (2020).

	72.	 Yuval, J. & O’Gorman, P. A. Stable machine-learning parameterization of 
subgrid processes for climate modeling at a range of resolutions. Nat. 
Commun. 11, 3295 (2020).

	73.	 Brenowitz, N. D. & Bretherton, C. S. Prognostic validation of a neural 
network unified physics parameterization. Geophys. Res. Lett. 45, 6289–6298 
(2018).

	74.	 Watt-Meyer, O. et al. Correcting weather and climate models by machine 
learning nudged historical simulations. Preprint at ESSOAr https://doi.
org/10.1002/essoar.10505959.1 (2021).

	75.	 Pathak, J. et al. Hybrid forecasting of chaotic processes: using machine 
learning in conjunction with a knowledge-based model. Chaos 28, 041101 
(2018).

	76.	 Krasnopolsky, V. M. & Fox-Rabinovitz, M. S. Complex hybrid models 
combining deterministic and machine learning components for numerical 
climate modeling and weather prediction. Neural Netw. 19, 122–134 (2006).

	77.	 Brenowitz, N. D. et al. Machine learning climate model dynamics: offline 
versus online performance. Preprint at http://arxiv.org/abs/2011.03081 
(2020).

	78.	 Brenowitz, N. D., Beucler, T., Pritchard, M. & Bretherton, C. S. Interpreting 
and stabilizing machine-learning parametrizations of convection. J. Atmos. 
Sci. 77, 4357–4375 (2020).

	79.	 Seifert, A. & Rasp, S. Potential and limitations of machine learning for 
modeling warm-rain cloud microphysical processes. J. Adv. Model. Earth 
Syst. 12, e2020MS002301 (2020).

	80.	 Beucler, T., Rasp, S., Pritchard, M. & Gentine, P. Achieving conservation of 
energy in neural network emulators for climate modeling. Preprint at 
https://arxiv.org/abs/1906.06622 (2019).

	81.	 Schneider, T., Lan, S., Stuart, A. & Teixeira, J. Earth system modeling 2.0: a 
blueprint for models that learn from observations and targeted 
high-resolution simulations. Geophys. Res. Lett. 44, 12396–12417  
(2017).

	82.	 Cintra, R. S. & Velho, H. Fd. C. Data assimilation by artificial  
neural networks for an atmospheric general circulation model:  
conventional observation. Bull. Am. Meteorological Soc. 77, 437–471  
(2014).

	83.	 Wahle, K., Staneva, J. & Guenther, H. Data assimilation of ocean wind 
waves using neural networks. a case study for the german bight. Ocean 
Model. 96, 117–125 (2015).

Nature Machine Intelligence | VOL 3 | August 2021 | 667–674 | www.nature.com/natmachintell 673

https://arxiv.org/abs/2005.14165
http://ieeexplore.ieee.org/document/578294
https://arxiv.org/abs/2101.08195
https://arxiv.org/abs/2007.04830
https://arxiv.org/abs/1710.05941
http://arxiv.org/abs/2002.08525
https://doi.org/10.1002/essoar.10505959.1
https://doi.org/10.1002/essoar.10505959.1
http://arxiv.org/abs/2011.03081
https://arxiv.org/abs/1906.06622
http://www.nature.com/natmachintell


Perspective NAturE MAchInE IntEllIgEncE

	84.	 Irrgang, C., Saynisch-Wagner, J. & Thomas, M. Machine learning-based 
prediction of spatiotemporal uncertainties in global wind velocity 
reanalyses. J. Adv. Model. Earth Syst. 12, e2019MS001876 (2020).

	85.	 Brajard, J., Carrassi, A., Bocquet, M. & Bertino, L. Combining data 
assimilation and machine learning to emulate a dynamical model from 
sparse and noisy observations: a case study with the Lorenz 96 model. J. 
Comput. Sci. 44, 101171 (2020).

	86.	 Ruckstuhl, Y., Janjić, T. & Rasp, S. Training a convolutional neural network 
to conserve mass in data assimilation. Nonlin. Processes Geophys. 28, 
111–119 (2020).

	87.	 Geer, A. J. Learning Earth system models from observations: machine 
learning or data assimilation? Phil. Trans. R. Soc. A 379, 20200089 (2021).

	88.	 Runge, J. et al. Inferring causation from time series in Earth system 
sciences. Nat. Commun. 10, 2553 (2019).

	89.	 Boers, N. et al. Prediction of extreme floods in the eastern central  
andes based on a complex networks approach. Nat. Commun. 5,  
5199 (2014).

	90.	 Qi, D. & Majda, A. J. Using machine learning to predict extreme events in 
complex systems. Proc. Natl Acad. Sci. USA 117, 52–59 (2020).

	91.	 Sonnewald, M., Dutkiewicz, S., Hill, C. & Forget, G. Elucidating ecological 
complexity: unsupervised learning determines global marine eco-provinces. 
Sci. Adv. 6, 1–12 (2020).

	92.	 Leinonen, J., Guillaume, A. & Yuan, T. Reconstruction of cloud vertical 
structure with a generative adversarial network. Geophys. Res. Lett. 46, 
7035–7044 (2019).

	93.	 Stengel, K., Glaws, A., Hettinger, D. & King, R. N. Adversarial 
super-resolution of climatological wind and solar data. Proc. Natl Acad. Sci. 
USA 117, 16805–16815 (2020).

	94.	 Huber, M. & Knutti, R. Anthropogenic and natural warming  
inferred from changes in Earth’s energy balance. Nat. Geosci. 5,  
31–36 (2012).

	95.	 Zanna, L. & Bolton, T. Data-driven equation discovery of ocean mesoscale 
closures. Geophys. Res. Lett. 47, e2020GL088376 (2020).

	96.	 Lagaris, I. E., Likas, A. & Fotiadis, D. I. Artificial neural networks for 
solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 
9, 987–1000 (1998).

	97.	 Raissi, M., Perdikaris, P. & Karniadakis, G. Physics-informed neural 
networks: a deep learning framework for solving forward and inverse 
problems involving nonlinear partial differential equations. J. Comput. Phys. 
378, 686–707 (2019).

	98.	 Ramadhan, A. et al. Capturing missing physics in climate model 
parameterizations using neural differential equations. Preprint at http://
arxiv.org/abs/2010.12559 (2020).

	99.	 Goodfellow, I. J. et al. Generative adversarial networks. Preprint at https://
arxiv.org/abs/1406.2661 (2014).

	100.	 Hurrell, J. W. et al. The Community Earth System Model: a framework for 
collaborative research. Bull. Am. Meteorol. Soc. 94, 1339 – 1360 (2013).

	101.	 Rudin, C. Stop explaining black box machine learning models for high 
stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 
206–215 (2019).

	102.	 Balaji, V. Climbing down Charney’s ladder: machine learning and the 
post-Dennard era of computational climate science. Phil. Trans. R. Soc. A 
379, 20200085 (2021).

	103.	 Sonnewald, M. et al. Bridging observation, theory and numerical simulation 
of the ocean using machine learning. Preprint at https://arxiv.org/
abs/2104.12506 (2021).

	104.	 Ethics Guidelines for Trustworthy AI (European Commission, 2019); https://
ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

	105.	 The Biden Administration Launches AI.gov Aimed at Broadening Access to 
Federal Artificial Intelligence Innovation Efforts, Encouraging Innovators of 
Tomorrow (White House, 2021); https://www.whitehouse.gov/ostp/
news-updates/2021/05/05/
the-biden-administration-launches-ai-gov-aimed-at-broadening-access-to-
federal-artificial-intelligence-innovation-efforts-encouraging-innovators-of-
tomorrow/

	106.	 Toms, B. A., Barnes, E. A. & Ebert-Uphoff, I. Physically interpretable neural 
networks for the geosciences: applications to Earth system variability. J. Adv. 
Model. Earth Syst. 12, e2019MS002002 (2020).

	107.	 Kaiser, B. E., Saenz, J. A., Sonnewald, M. & Livescu, D. Objective discovery 
of dominant dynamical processes with intelligible machine learning. 
Preprint at https://arxiv.org/abs/2106.12963 (20201).

	108.	 McGovern, A. et al. Making the black box more transparent: understanding 
the physical implications of machine learning. Bull. Am. Meteorological Soc. 
100, 2175 – 2199 (2019).

	109.	 Ebert-Uphoff, I. & Hilburn, K. Evaluation, tuning and interpretation of 
neural networks for working with images in meteorological applications. B. 
Am. Meteorol. Soc. 101, E2149–E2170 (2020).

	110.	 Sonnewald, M. & Lguensat, R. Revealing the impact of global heating on 
North Atlantic circulation using transparent machine learning. Preprint at 
ESSOAr https://doi.org/10.1002/essoar.10506146.1 (2021).

	111.	 Beucler, T., Ebert-Uphoff, I., Rasp, S., Pritchard, M. & Gentine, P. Machine 
learning for clouds and climate (invited chapter for the AGU geophysical 
monograph series ‘clouds and climate’). Preprint at ESSOAr https://doi.
org/10.1002/essoar.10506925.1 (2021).

	112.	 Olden, J. D., Joy, M. K. & Death, R. G. An accurate comparison of methods 
for quantifying variable importance in artificial neural networks using 
simulated data. Ecol. Model. 178, 389–397 (2004).

	113.	 Bach, S. et al. On pixel-wise explanations for non-linear classifier decisions 
by layer-wise relevance propagation. PLoS ONE 10, e0130140 (2015).

	114.	 Barnes, E. A., Mayer, K., Toms, B., Martin, Z. & Gordon, E. Identifying 
opportunities for skillful weather prediction with interpretable neural 
networks. Preprint at https://arxiv.org/abs/2012.07830 (2020).

	115.	 Sonnewald, M., Wunsch, C. & Heimbach, P. Unsupervised learning reveals 
geography of global ocean dynamical regions. Earth Space Sci. 6, 784–794 
(2019).

	116.	 Callaham, J. L., Koch, J. V., Brunton, B. W., Kutz, J. N. & Brunton, S. L. 
Learning dominant physical processes with data-driven balance models. 
Nat. Commun. 12, 1016 (2021).

	117.	 Runge, J., Nowack, P., Kretschmer, M., Flaxman, S. & Sejdinovic, D. 
Detecting and quantifying causal associations in large nonlinear time series 
datasets. Sci. Adv. 5, eaau4996 (2019).

	118.	 Eyring, V. et al. Taking climate model evaluation to the next level. Nat. 
Clim. Change 9, 102–110 (2019).

	119.	 Schlund, M. et al. Constraining uncertainty in projected gross primary 
production with machine learning. J. Geophys. Res. Biogeosci. 125, 
e2019JG005619 (2020).

	120.	 Rasp, S. et al. WeatherBench: a benchmark dataset for data-driven weather 
forecasting. J. Adv. Model. Earth Syst. 12, e2020MS002203 (2020).

	121.	 Geirhos, R. et al. Shortcut learning in deep neural networks. Nat. Mach. 
Intell. 2, 665–673 (2020).

	122.	 Buckner, C. Understanding adversarial examples requires a theory of 
artefacts for deep learning. Nat. Mach. Intell. 2, 731–736 (2020).

	123.	 Alvarez-Melis, D. & Jaakkola, T. S. On the robustness of interpretability 
methods. Preprint at https://arxiv.org/abs/1806.08049 (2018).

	124.	 Rolnick, D. et al. Tackling climate change with machine learning. Preprint 
at http://arxiv.org/abs/1906.05433 (2019).

Acknowledgements
This study was funded by the Helmholtz Association and by the Initiative and 
Networking Fund of the Helmholtz Association through the project Advanced Earth 
System Modelling Capacity (ESM). N.B. acknowledges funding by the Volskwagen 
foundation and the European Union’s Horizon 2020 research and innovation program 
under grant agreement number 820970 (TiPES, contribution #121). E.A.B. was 
supported, in part, by the US National Science Foundation under grant number AGS-
1749261. M.S. acknowledges funding from the Cooperative Institute for Modeling the 
Earth System, Princeton University, under award number NA18OAR4320123 and from 
the National Oceanic and Atmospheric Administration, US Department of Commerce. 
The statements, findings, conclusions, and recommendations are those of the authors 
and do not necessarily reflect the views of Princeton University, the National Oceanic 
and Atmospheric Administration or the US Department of Commerce.

Author contributions
C.I. conceived the study and organized the collaboration. All authors contributed to 
writing and revising all sections of this manuscript. In particular, N.B. and C.I. drafted 
the ESM overview, J.S.-W. and J.S. drafted the ESO and data assimilation overview, C.I. 
and C.K. drafted the ‘From ML-based data exploration towards learning physics’ section, 
C.I. and J.S.-W. and N.B. drafted the ‘Fusion of process-based models and AI’ section and 
M.S. and E.A.B. and CI drafted the ‘Peering into the black box’ section.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence should be addressed to C.I.

Peer review information Nature Machine Intelligence thanks the anonymous reviewers 
for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© Springer Nature Limited 2021

Nature Machine Intelligence | VOL 3 | August 2021 | 667–674 | www.nature.com/natmachintell674

http://arxiv.org/abs/2010.12559
http://arxiv.org/abs/2010.12559
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/2104.12506
https://arxiv.org/abs/2104.12506
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://www.whitehouse.gov/ostp/news-updates/2021/05/05/the-biden-administration-launches-ai-gov-aimed-at-broadening-access-to-federal-artificial-intelligence-innovation-efforts-encouraging-innovators-of-tomorrow/
https://www.whitehouse.gov/ostp/news-updates/2021/05/05/the-biden-administration-launches-ai-gov-aimed-at-broadening-access-to-federal-artificial-intelligence-innovation-efforts-encouraging-innovators-of-tomorrow/
https://www.whitehouse.gov/ostp/news-updates/2021/05/05/the-biden-administration-launches-ai-gov-aimed-at-broadening-access-to-federal-artificial-intelligence-innovation-efforts-encouraging-innovators-of-tomorrow/
https://www.whitehouse.gov/ostp/news-updates/2021/05/05/the-biden-administration-launches-ai-gov-aimed-at-broadening-access-to-federal-artificial-intelligence-innovation-efforts-encouraging-innovators-of-tomorrow/
https://www.whitehouse.gov/ostp/news-updates/2021/05/05/the-biden-administration-launches-ai-gov-aimed-at-broadening-access-to-federal-artificial-intelligence-innovation-efforts-encouraging-innovators-of-tomorrow/
https://arxiv.org/abs/2106.12963
https://doi.org/10.1002/essoar.10506146.1
https://doi.org/10.1002/essoar.10506925.1
https://doi.org/10.1002/essoar.10506925.1
https://arxiv.org/abs/2012.07830
https://arxiv.org/abs/1806.08049
http://arxiv.org/abs/1906.05433
http://www.nature.com/reprints
http://www.nature.com/natmachintell

	Towards neural Earth system modelling by integrating artificial intelligence in Earth system science

	Overview of Earth system modelling and ESOs

	From ML-based data exploration towards learning physics

	Fusion of process-based models and AI

	Peering into the black box

	Concluding remarks

	Acknowledgements

	Fig. 1 Symbolic representation of Earth system components in terms of knowledge clusters.
	Fig. 2 Successive stages of the fusion process of ESMs and AI towards NESYM.




