
Bug Bounty
Hunting:
Vulnerability
Discovery

Logan Gillis, Aiden Habboub, Yaz Abu-Zaid

What is HackerOne Bug Bounty?

● Crowdsourced Security Platform

● Bug Bounty Programs

● Vulnerability Reporting Workflow

● Ethical Hacking Framework

● Used by Major Companies

Neon
● Open-Source Database Company

● Separation of Storage & Compute

● Key Features

○ Autoscaling

○ Instant branching (for quick testing environments)

○ Bottomless storage (no storage limits)

● Security-Focused

● Innovation-Driven

HTML Injection Overview

Why it matters?

● Stored/DOM-based XSS can lead to user-level compromise

● Elevating a known vulnerability

● Validating Neon’s security posture

Scope of Testing

● Focused on authenticated pages and user-controlled inputs

● Operated within the constraints of Neon’s Bug Bounty Disclosure

HTML Injection Setup and Testing
Environment Setup

● MacOs system using OWASP ZAP for traffic interception/vulnerability scanning

● Test accounts created using HackerOne alias

● ZAP configured for both passive and active scanning

Testing

● Mapped application endpoints/user flows

● Injected known XSS payloads into user-editable fields

● Checked for payload persistence and JS execution in DOM

Results
Findings

● No successful payloads were executed via script injection

● All were escaped before any execution

Takeaways

● Neon’s current sanitization appears effective against common XSS escalation

● Proper output encoding and input filtering are present

● User inputs are handled with appropriate escaping

Next Steps

● Explore other input contexts or chained vulnerabilities

● Test across different browsers

● Review JS source maps or API responses for hidden/overlooked parameters

Misconfigurations

CORS: What It Is, Why It’s
Important, And How To Exploit It

What Is CORS & Why It Matters
Why it matters?

● Stops malicious pages access to authenticated API responses

● Complements HTTPS & server-side auth

● Misconfig risk: wildcard * or reflecting arbitrary Origin with credentials

Scope of Testing

● Focused on account accessible API endpoints

● Ignored public facing API

Testing For CORS Misconfigurations

Tools

● Curl: quick header check

● Burp Browser: capture a API request

● Burp Repeater: edits the contents of a request and repeat it

Execution

1. Capture a request to an API endpoint

2. Inspect it in Burp Suite

3. Send to repeater to alter request

4. Resend with foreign origin site

Takeaways

● CORS = JS-level gatekeeper, not network blocker

● Always pair with strong server-side auth/authorization

● Best practice: whitelist exact origins, never * with credentials, validate Origin

server-side

Low-Impact Authorization/Authentication Issues

- Insecure direct object references (IDOR) with
low-privilege data

Subdomain Takeovers

- Enumerate unused subdomains (especially
under neon.build)
Check for CNAMEs pointing to decommissioned
services

Verbose Error Messages in APIs

- Send malformed JSON or unexpected data types
- Trigger deserialization/parsing errors data types
- Explore /api/v2/ for error leaks with internal structure details

Work Summary

v

HackerOne

Cross-account access attempts03

Testes 3 main API categories01

Indirect Object References (IDOR) Testing Overview

02 Used Burp Suite for traffic analysis

● User Authentication (/api/v2/users/me)
● Project Management (/api/v2/projects)
● Consumption Data (/api/v2/users/me/consumption)

Burp or Burp Suite is a set of tools used for penetration testing
of web applications. It is developed by the company named
Portswigger. It is the most popular tool among professional web
app security researchers and bug bounty hunters.

HackerOne

What Are Indirect Object
References?

- Vulnerability allowing unauthorized access through ID
manipulation

- Occurs when applications lack proper access control
verification

- Attackers modify URLs or parameters to access restricted
data

- Common in APIs, databases, and file systems

Testing Methods

What is Burp Suite?

Target APIs Identified

⟶ Project ID manipulation

⟶ User ID modification

⟶ SQL Parameter Injection

⟶ Cross-account session testing

Methodology

Analyze request
structure, and send
intercepted request
to Burp Suite’s
repeater function

Step 03

Observed the traffic
and note key GET
and POST requests

Step 02

Used Burp Suite’s
Interceptor to grab
traffic from
neon.tech

Step 01

Create Two accounts
on the service

These will be used to
test inter-account
information access

Step 04

Manipulate requests
Authentication data,
Project Endpoints,
Database/Branch
Operations,

Step 05 Observe response
from the site, note
headers and
response info

Step 06

Results

Attack Vectors

● Project Access

● User Information

● Consumption data

Results

● No IDOR vulnerability endpoints

● Broad Error Messages

{

"request_id":"6dfb81f7-10c2-4c51-a807-1689946223
3f","code":"","message":"supplied credentials do not
pass authentication"

}

HackerOne Bug Bounties

Bug Bounty Attack 2

Subdomain Takeovers

● Access to main domain cookies
● Cross-Site Scripting
● Circumvent security policies
● Gather sensitive information

HackerOne

What is a Subdomain Takeover
- Subdomain

- A subdomain is a separate section of a website
that uses a unique URL, but resides under your
main domain name

- Takeover
- Take control over abandoned/Inactive

subdomains
- Uses Canonical names to gain access

Testing Methodology

Subdomain Takeover Vulnerabilities

⟶ Reconnaissance

⟶ Check for Dead Subdomain Connections

⟶ DNS Record Analysis

⟶ Note Vulnerable enpoints

What is a Canonical Name (CNAME)
● These names take place of the original hosting URL. For

example, if you want to host a website at www.example.com,
and it is originally hosted on example1proj.vercel.app. The
CNAME allows a record to be created, and this record allows
the DNS to resolve the original URL to the desired URL

http://www.example.com/

HackerOne

⟶ Conducted comprehensive subdomain
discovery across three primary Neon
domains to map the attack surface

⟶ Used automated tools to identify all
associated subdomains and development
environments

⟶ This phase established the foundation for
identifying potential takeover targets

⟶ Systematically categorized 215 total
subdomains into 175 active and 40 inactive
endpoints

⟶ Filtered dead subdomains by HTTP error
codes to identify abandonment patterns

⟶ This segregation focused testing efforts on
the most vulnerable targets

⟶ Analyzed DNS configurations for each dead
subdomain to identify dangling CNAME
records

⟶ Created automated scripts to efficiently
process DNS lookups across all targets

⟶ This analysis revealed potential takeover
opportunities where services no longer exist

⟶

⟶ 3 Dead/ Abandoned Endpoints that are at risk
for attackers

Reconnaissance
Dead Subdomain

Check

DNS Record
Analysis

Note Vulnerable
Endpoints

Analysis

Subdomain Analysis

HackerOne

What this Script does

- Reads dead subdomains from dead-subdomains.txt file

- Cleans domain names by removing https://, URL paths, and
status codes from httpx output

- Queries DNS records for each cleaned subdomain using
dig command

- A Records: Shows IP addresses the domain points to
- CNAME Records: Shows what external service the

domain redirects to
- All Records: Comprehensive DNS record view

- Identifies dangling CNAMEs that point to external services

- Saves results to dns-records.txt for analysis of potential
subdomain takeover vulnerabilities

echo "=== DNS Record Analysis for Dead Subdomains ==="
echo "Date: $(date)"
echo ""
while read subdomain; do
 # Remove https:// and any path/parameters to get clean
domain
 clean_domain=$(echo "$subdomain" | sed 's|https\?://||' | sed
's|/.||' | sed 's|\[.||')
 echo "=== Checking $clean_domain ==="
 echo "A Record:"
 dig +short A $clean_domain
 echo "CNAME Record:"
 dig +short CNAME $clean_domain
 echo "All Records:"
 dig +short $clean_domain
 echo "---"
 echo ""
done < dead-subdomains.txt > dns-records.txt
echo "DNS analysis complete. Results saved to
dns-records.txt"

HackerOne Bug Bounties

Bug Bounty Attack 3

Verbose Error Messages In
APIs

HackerOne

What Are Verbose Error
Messages In APIs

Information disclosure can reveal:

● Database structure and table names
● Internal file paths and directory structure
● Framework versions and dependencies
● Server configuration details
● Business logic and validation rules

● Netflix API leak exposed internal architecture through error
messages

● GitHub API historically leaked repository existence through
error variations

● Stripe API error messages revealed payment processing
internals- APIs that return detailed error information about internal system

architecture

- Error messages containing stack traces, database schemas, file
paths, or configuration details

- Common in development environments that accidentally reach
production

Real Worl Examples

Why this is important

Fuzzing malformed inputs: Send intentionally broken or
incorrectly typed JSON payloads.

Trigger edge-case failures: Use unexpected characters,
types (e.g., array instead of object), or missing fields.

Force parsing or deserialization errors: Attempt to break
backend handling logic.

Example:

{ "user_id": ["not", "a", "string"] }
{ "incomplete_payload":

Goal: Discover Errors that leak:
● Stack traces

● Internal file paths

● Function/class names

● Framework or tech stack info

Testing Methodology & Tools - API Error
Exploitation

Objective: Identify improperly handled or overly descriptive
error responses in Neon’s /api/v2/ endpoints.

Malformed Input Testing

Approach

Tools Used

Burp Suite (or Postman): Manual request crafting,
parameter tampering, intercepting responses.

ffuf or Intruder (Burp): Fuzzing input fields with
malformed payloads.

httpx (ProjectDiscovery): Confirm which endpoints are live
and responsive.

jq or custom Python scripts: To parse and filter responses
for error patterns

● Use the unique header
X-Bug-Bounty:HackerOne-username to ensure
compliance with testing rules.

● Target only in-scope endpoints, especially
/api/v2/.

Key Tools Setup

Why It’s Important

Verbose errors can expose internal logic, architecture,
and stack traces.

These details help attackers:

● Map internal services

● Identify backend frameworks and vulnerable
libraries

● Craft targeted exploits (e.g., RCE, privilege
escalation)

Reducing verbosity prevents reconnaissance by bad
actors.

Aligns with secure coding practices and OWASP API
Security Top 10 (API6:2023 - Unrestricted Access to
Sensitive Business Flows).

Security Implications Value to Neon

AI & How To Write A Report

Vulnerability Report & Latest In
The Field

Standards For Vulnerability Reports
Contents

● Concise Summary Title

● Summary

● Steps to Reproduce

● Expected vs. Actual Behavior

● Impact & CVSS Rating

● Supporting Material:

Takeaways

● Reports are Information so be direct, clear, and concise

● The report is useless if reviewers cannot reproduce the vulnerability using your
directions

Common Vulnerability Scoring System - CVSS Scores
What it is

● Industry-standard way to rate the
severity of a vulnerability

● Helps triage teams prioritize fixes by
standardizing impact

Base Score (0.0–10.0)

● Exploitability: how easy is it to exploit?
○ Attack vector
○ Attack complexity
○ Privileges required
○ User interaction

● Impact: what gets affected if exploited?
○ Confidentiality
○ Integrity
○ Availability

CVSS Vector String

What it is

● Compact individual metrics
that make up a CVSS Base
Score.

Example:

● AV:N/AC:L/PR:N/UI:N/S:U/C:H/

I:H/A:N

Metric Value Meaning

AV:N Attack Vector:
Network

Can be exploited remotely over the
internet

AC:L Attack
Complexity: Low

No special conditions required; easy to
exploit

PR:N Privileges
Required: None

Attacker doesn’t need to be logged in

UI:N User Interaction:
None

No action from the user is needed

S:U Scope:
Unchanged

Exploit only impacts the same security
domain

C:H Confidentiality:
High

Major data exposure is possible

I:H Integrity: High Data could be manipulated or altered

A:N Availability:
None

System availability is not affected

Bans On AI Bugs reports Begin

“Curl project founder snaps over
deluge of time-sucking AI slop bug
reports”

The misconception that vulnerability threat assessments to
identify bugs is easy because it accessible has made a
convenient target for unorganized AI automation https://www.theregister.com/2025/05/07/curl_

ai_bug_reports/

Citations
● https://www.infosecinstitute.com/resources/vulnerabilities/how-to-write-a-vulnerability-report/
● https://owasp.org/www-community/vulnerabilities/Vulnerability_template
● https://docs.hackerone.com/en/articles/8475116-quality-reports?utm_source=chatgpt.com
● https://www.threads.com/@nixcraft/post/DJROwcupBat/media
● https://www.theregister.com/2025/05/07/curl_ai_bug_reports/
● https://www.phoenix.com/blog/cvss-4-0-is-here/
● https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html
● https://www.geeksforgeeks.org/what-is-burp-suite/
● https://owasp.org/www-project-api-security/
● https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
● https://github.com/projectdiscovery/subfinder
● https://github.com/projectdiscovery/httpx
● https://github.com/ffuf/ffuf

https://www.infosecinstitute.com/resources/vulnerabilities/how-to-write-a-vulnerability-report/
https://owasp.org/www-community/vulnerabilities/Vulnerability_template
https://docs.hackerone.com/en/articles/8475116-quality-reports?utm_source=chatgpt.com
https://www.threads.com/@nixcraft/post/DJROwcupBat/media
https://www.theregister.com/2025/05/07/curl_ai_bug_reports/
https://www.phoenix.com/blog/cvss-4-0-is-here/
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html
https://www.geeksforgeeks.org/what-is-burp-suite/
https://owasp.org/www-project-api-security/
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
https://github.com/projectdiscovery/subfinder
https://github.com/projectdiscovery/httpx

vTHANK YOU
Any questions?

