WireShark
Defense!

By Stephen, Owen,
Senchen and Hugo

What was our project?

e Program that monitors network activity

e Uses Wireshark to collect network information

e Monitors the network for potential threats, unusual activity, and surveys
general traffic

e Sends messages/alerts when potential threats are detected

e Keeps a list of safe and blacklisted IP addresses

e Fully automated process

Motivations

Why this project?

e |Interested in how automated network security works
e We like to snoop around
e Curious about network sniffing

Why Wireshark?

e Welovesharks!!!

e Tellsyou lot about network trafficking (shows IP addresses live, packet data,
domain info, etc.)

e Great for uncovering malware, unusual traffic, and all sorts of attacks

e Allows you to closely watch your network (or whoever’s network...)

What is WireShark?

Exactly what it sounds like
A network protocol analyzer (network monitoring system)

Analyzes traffic passing through a network

Free to use and open source

Widely used for network troubleshooting, security analysis and protocol
development

e Helps users spot suspicious activity and detect
network problems
e Works with a variety of networks (like wifi and

ethernet)

Brief Wireshark History

e Createdin 1998 by Gerald Combs under the name Ethereal

e Setouttocreate afree, open-source alternative to the expensive network
analyzers at the time

e Renamed to Wireshark in 2006 due to trademark issues

e Quickly became one of the biggest packet analyzers due to its free to use and
open source nature

e Continually developed today with
many large sponsors

e Over 2 million downloads annually

Supports over 20 languages

Wireshark Output

e No.: The packet number in the e — BEP

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

capture sequence L N —

No. Time Source Destination Protocol Lengtl Info
. . N M 645 2.197587 18.160.225.108 192.168.1.232 TP 1486 443 > 51782 [ACK] Seq=664593 Ack=3087 Win=77312 Len=1432
[) I I I Ie . I I I le SI nce t e Sta rt O t e 646 2.197587 18.160.225.108 192.168.1.232 Tcp 1486 443 > 51782 [PSH, ACK] Seq=666025 Ack=3087 Win=77312 Len=1432
647 2.197652 192.168.1.232 18.160.225.108 Tcp 54 51782 » 443 [ACK] Seq=3087 Ack=667457 Win=263424 Len=0
648 2.199373 18.160.225.108 192.168.1.232 Tcp 1486 443 > 51782 [ACK] Seq=667457 Ack=3087 Win=77312 Len=1432
649 2.199373 18.160.225.108 192.168.1.232 Tcp 1486 443 > 51782 [PSH, ACK] Seq=668889 Ack=3087 Win=77312 Len=1432
Ca ptu re W h e n th e pa C ket Wa S See n 650 2.199465 192.168.1.232 18.160.225.108 Tcp 54 51782 » 443 [ACK] Seq=3087 Ack=670321 Win=263424 Len=0
651 2.200189 18.160.225.108 192.168.1.232 Tcp 1486 443 > 51782 [ACK] Seq=670321 Ack=3087 Win=77312 Len=1432 [TCP PDU reassembled in 652]
652 2.200189 18.160.225.108 192.168.1.232 TLSVI.3 709 Application Data, Application Data
o o 653 2.200278 192.168.1.232 18.160.225.108 Tcp 54 51782 » 443 [ACK] Seq=3087 Ack=672408 Win=263424 Len=0
e Source: The ori gin IP address or Gerwen eimaian Miawazw Tewz 100 mplscation Dot
. 655 2.303501 192.168.1.232 34.192.244.162 Tcp 1486 51770 » 443 [ACK] Seq=314 Ack=55 Win=509 Len=1432 [TCP PDU reassembled in 657]
656 2.303501 192.168.1.232 34.192.244.162 Tcp 1486 51770 > 443 [ACK] Seq=1746 Ack=55 Win=509 Len=1432 [TCP PDU reassembled in 657]
. 657 2.303501 192.168.1.232 34.192.244.162 TLSvI.2 1304 Application Data
d eV I Ce 658 2.401056 34.192.244.162 192.168.1.232 Tcp 54 443 > 51770 [ACK] Seq=55 Ack=3178 Win=338 Len=0
659 2.401056 34.192.244.162 192.168.1.232 TLsvi.2 512 Application Data
660 2.401277 192.168.1.232 34.192.244.162 Tcp 54 51770 > 443 [ACK] Seq=4428 Ack=513 Win=514 Len=0
661 3.130193 2600: 6c4a:7670:1400.. 2600:6c4a:78F0:1400... DNS 94 Standard query 0xd97f A ecs.office.com |

e Destination: The receiving IP T
address/device

e Protocol: The network protocol
used (TCP, TLSv1.2, DNS

e Length: Size of the packet (in bytes

e [nfo: Brief summary of what'’s ST . R
happening in the packet

9020 10 17 ca 45 01 bb 10 b3 a7 b8 00 00 00 00 80 02
0030 fa fo f9 5f 00 00 02 04 05 b4 01 03 03 08 01 01
0040 04 02

>
> Ethernet II, Src: CyberTANTech_72:21:9d (@@:45:e2:72:21:9d), Dst: SagemcomBroa_db:78:e4 (@:7b:65:db:781 2710 00 34 b9 54 46 @0 80 06 4b 1c c@ a8 01 e8 23 ac
> Internet Protocol Version 4, Src: 192.168.1.232, Dst: 35.172.16.23

>

Some Discussion Questions

e If you were investigating a suspected network breach, what would you look
for?

e \What are some creative ways attackers might try to hide their activity in
network traffic, and how could you detect them?

e What challenges do organizations face when trying to monitor all network
traffic, and how might they overcome them?

e How might the increasing use of loT devices affect network security

monitoring and analysis?

Explain NMap

Powerful network discovery and security auditing tool

- Scans for live hosts, open ports, and running services

- ldentifies operating systems and software versions

- Helps detect vulnerabilities and misconfigurations

- Works on most OS platforms including Linux, Windows, and macQOS
- Command-line based with optional GUI (Zenmap)

- Frequently used by network admins, pen testers, and hackers

NMap Part 2

nmap -sS: Stealth (SYN) scan for quick detection

n- map -sV: Ildentify service versions (e.g., Apache 2.4.46)
nmap -O: OS detection using TCP/IP fingerprinting

nmap -Pn: Skip host discovery to find hidden systems

nmap -A: Aggressive scan (OS, versions, scripts, traceroute)
nmap -p-: Full port scan (1-65535)

Combine options for deep enumeration (e.g., -sS -sV -O -p-)

How we combine everything

- Adds active scanning to complement packet analysis
- Scans for open ports, services, and OS fingerprints

- Targets suspicious or high-traffic IPs

- Helps validate findings from Wireshark logs

- Uses subprocess or python-nmap for automation

- Results can trigger alerts or update the local database

Application Flow

Capture or import .pcap network traffic

Run passive analysis using PyShark

Analyze traffic summary and device behavior
Detect unusual patterns and potential threats
Trigger email alerts or further scanning

Use Nmap for active verification

Store flagged data in local database (SQLite)

N o koD

Technical Info

Language: Python 3.11

- Packet Analysis: PyShark (wrapper around TShark)
L '

- Active Scanning: Nmap via subprocess

- Alerting: SMTP email notifications (Gmail API)

- Storage: SQLite for storing blacklisted IPs + logs
- Modular Design: Separate modules for each task

- Extensible: Easily add more threat detection patterns

Capturing Data

- Captures traffic from a specified interface

- Stores packets to .pcap file for offline analysis

- Auto-stops after user-defined duration (e.g., 10 sec)
- Saves output to captures/output.pcap

- Ensures capture directory is created if missing

start_capture(interface="Wi-Fi', output_file=' , duration=18):

os.makedirs(os.path.dirname(output_file), exist_ok=

Capturing Data

p :{duration}”
, output_file
1
print(f"Starting capture on {interface} for {duration

st ss.run(cmd)
print(f"Capture saved t output_file}")

capture_tshark_main():
start_capture()

Breaking down the technicalities—device activity

|dentifies active devices on the network via source/destination IPs
Tracks total number of packets and data sent/received per device
Flags devices with:

- Unusually high traffic

- Repeated connection attempts

- Frequent communication with external IPs
Correlates with blacklist to check for known malicious IPs
Used to generate network activity summaries for further
inspection
Forms the basis for alert triggers and behavior profiling

IP Monitoring

Extracts all unique IPs from .pcap file

Checks if any match known blacklisted IPs

Sends email alert if a match is found

Can scan full traffic logs or live packets

Separate function supports real-time packet monitoring

Uses pyshark for packet parsing and SMTP for alerts

Unusual Ports and Protocol Behavior

e Flags use of low, non-standard ports (e.g., 4444, 31337)

e Checks if common services like HTTP appear on wrong
ports

e Tracksincomplete TCP handshakes (potential stealth scans)

e Compares observed ports to a known-safe set

e Captures SYN-only connections without ACKs

DNS-Based Threat Monitoring

e Flags clients making excessive DNS requests

e Highlights queries to domains with suspicious TLDs (.ru, .cn, .xyz)
e Uses adomain threat feed for known bad domains

e |dentifies potential command-and-control (C2) traffic

e Addsdomain frequency stats to reports

Encrypted Traffic to Untrusted Hosts

e Scans TLS handshake data in captured traffic

e Flags self-signed or unusual certificate issuers

e Checks for suspicious keywords in SNI field (e.g., c2, malware)
e Detects expired or unverified certificates (optional)

e Helps expose hidden communication with malicious servers

Database

__init_ (self, db_name: str = 'tra
self.db_name = db_name

self.conn = sqlite3.connect(self.db_name)
self.cursor = self.conn.cursor()

print(f"Connected to database: {db_name}")

create_table(self, table_sqgl:

self.cursor.execute(table_sql)

self.conn.commit()
print(

print(

insert(self, query: str, values:

self.cursor.execute(query, values)
self.conn.commit()
ept sglite rror as e:

print(f"I1

insert_many(self, query: str, values_list: List

self.cursor.executemany(query, values_list)
self.conn.commit()
sqlite3.Error as e:

print(f"I

insert_many(self, query: str, values_list: List

self.cursor.executemany(query, values_list)

self.conn.commit()

print(

query(self, query: str, params:

self.cursor.execute(query, params
eturn self.cursor.fetchall()

ite3.Error as e:

brint(
eturn []

delete(self, query: str, params:

self.cursor.execute(query, params)
self.conn.commit()
- sglite3.Error as e:

print(f"Dele

close(self):

self.conn.close()

print("Database

packets = []
print(" Starting analysis..

for i, pkt in enumerate(cap):
try:
def check_large_downloads(df, threshold_bytes, email_config): packets.append({

large_downloads = {} ‘No': int(pkt.no),
. Read S a nd a n a |yZeS a netWO rk alert_body = "" 'Time': float(pkt.time),
'Source': pkt.source,
for ip in df['Destination'].unique(): 'Destination': pkt.destination,
total_received = df[df['Destination'] == ip]['Length'].sum() ‘Protocol’s pkt.protocol,
Ca pt u re ﬁ | e if total_received > threshold_bytes: ‘Length': int(pkt.length),
large_downloads[ip] = total_received

alert_body += f"{ip}: {total_received/1024/1024:.2f} MB\n" fi% 100

e Checks for large downloads by o e s

print("\nALERT: Large downloads detected!")
continue
for ip, size in large_downloads.items():
. w i 24:. u
calculating how much data T e e
. . print(f*\n Processed {len(packets)} packets in total.")
send_gmail_email(
subject="Network Alert: Large Download Detected",

M M M body=alert_body,
estinations recelve
recipient=email_config['recipient'l,
username=email_config['username'l],
password=email_config[‘password']

df = pd.DataFrame(packets)

check_large_downloads

check_large_downloads

df=df,

threshold_bytes=100 * 1024 * 1024, # 100 MB

email_config
‘sender’ johnsmith314350@gmail.com
‘recipient ohnsmith314350@gmail. com
‘username': johnsmith314350@gm|ail.com 3
‘password': "ohjlpjjajarmltwi®

e Sendsoutanemail alert if ——
any device downloads more
than a certain amount KT

display_filte
)

pt Exception as e: print(f" Total data transferred: {df['Length'l.sum()} bytes")
(100mb)

return print("\n Most Common Communication Types (Protocols):")

for protocol, count in df['Protocol'l.value_counts().head(10).items():

Print tatisti

print(* Preloading packets into memory. for ip, count in df['Source'l.value_counts().head(5).items():

cap- load_packets () print(f* -> {ip}: {count} messages sent")
a Ou ne WO r ra C print(f" Loaded {len(cap)} packets in {round(time.time() - start_time, 2)} seconds.")

except Exception as e: print("\n Most contacted devices or websites (Destination IPs)

print(f" Failed to load packets: {e}") for ip, count in df['Destination'].value_counts().head(5).items():
print(f" —> {ip}: {count} messages received")

print(f"\n Total messages observed: {len(df)}")

start_time = time.time() print(f* -> {protocol}: {count} messages")

print("\n Devices that sent the most messages (Source IPs):")

return

In Class Demo

Which display of network activity looks better (safer network)?

What possible threats can you notice?

Source [P Destination Protocol Length b Source IP Destination Protocol Length
IP IP

0.000000 192168115 10.0.05 [SYN] Seq=0 Win=64240 Len=0 0.000000 192168110 8.8.88 Standard query A www.google.com

0.000100 10.005 192168115 [SYN, ACK] Seq=0 Ack=1 0001200 8888 192168110 Standard query response A
Win=65535 Len=0 142.250190.4

0.000200 192168115 [ACK] Seq=1Ack=1Win=64240 Len=0 0003400 192168110 142.250190.4 [SYN] Seq=0 Win=64240
Len=0 MSS=1460

0.001000 192168115 [PSH, ACK] Encrypted Data (TLS)

0.003800 142.250190.4 192168110 [SYN, ACK] Seq=0 Ack=1
Win=65535 Len=0

0.002000 192168115 [PSH, ACK] Encrypted Data (TLS)

0.004100 192168110 142.250190.4 [ACK] Seq=1 Ack=1
0.100000 192168115 [PSH, ACK] Encrypted Data (TLS) Win=64240 Len=0

0.005200 192168110 142.250190.4 GET /search?g=wireshark HTTP/1.1

0.200000 192168115 [PSH, ACK] Encrypted Data (TLS) 0.006500 142.2501904 192168110 HTTP/11200 OK (text/html)

Applications

What could this be used for?

Campus network monitoring for suspicious activity

Small business cybersecurity with minimal cost

Detecting early signs of malware or ransomware behavior
Monitoring employee or device network habits

Teaching tool for cybersecurity classesDIY home network
intrusion detection system

Real-world counterparts

Similar software already out there:

e Snort - Real-time packet-based IDS

e Suricata - High-performance IDS/IPS with rule-based filtering

e Zeek (Bro) - Network analysis framework for behavioral
monitoring

e Security Onion - Full-stack Linux distro for monitoring

Splunk - Enterprise-level log and traffic analyzer

e Darktrace - Al-based anomaly detection

Possible additions for the future

What we might add down the line (but we ain’t actually doing this)Web-based
dashboard for traffic visualization:

e Machine learning-based anomaly detection

e Integration with threat intelligence feeds (e.g., AbuselPDB)
e Real-time packet classification

e GeolP mapping of traffic sources

e Auto-quarantine or firewall rule updates

e Customrules engine for defining threat conditions

Our Takeaways from the project — All if us

e Whatdid we all learn from this?
e \What were some unexpected struggles?

e Our main takeaways

Sources?

https://www.wireshark.org/

https://www.webasha.com/blog/wireshark-the-ultimate-network-protocol-analyze
r-for-beginners

https://www.wireshark.org/
https://www.webasha.com/blog/wireshark-the-ultimate-network-protocol-analyzer-for-beginners
https://www.webasha.com/blog/wireshark-the-ultimate-network-protocol-analyzer-for-beginners

g
'S
-
=
X
=
—

