
NFA pattern matching

Pattern-search programs take two inputs: a pattern given by the user and a file of text. The
program determines whether the text file contains a match to the pattern, typically using some
variation on NFA/DFA technology. Fully developed programs, such as grep, accept patterns
containing regular-expression operators (e.g. union) and other convenient shorthands. Our
patterns will be much simpler.

Let’s fix an alphabet Σ = {a, b,z, 0, 1,9}. Let Γ = Σ ∪ {?, #, +}. A pattern will be
any string in Γ∗. A string w matches a pattern p if you can line up the characters in the two
strings such that:

• When p contains a character from Σ, it must be paired with an identical character in w.
• The character ? in p can match any substring x in w, where x contains at least one
character.
• The character # in p can match any numeric digit 0, . . ., 9.
• The character + in p can match exactly one character.

For example, the pattern “fleck” matches only the string “fleck”. The pattern p = 2#3
will match strings such as “283”, “203”, but not “173” and not “2893”. The pattern p =
273?f leck? will match a string w which starts with “273” immediately followed by some
text of length at least one, followed by “fleck”, followed by at least one more character (e.g.
“273ab7sfleck8”). The pattern p = cs+27+ will match a string w which starts with “cs”
immediately followed 1 character, then “27”, then at least one more character (e.g., “csa273”,
“cs8275”).
A text file t contains a match to a pattern p if t contains some substring w such that w
matches p.

1. Design an algorithm which converts a pattern p to an NFA Np that searches for matches to
p. That is, the NFA Np will read an input text file t and accept t if and only if t contains a
match to p. Np searches for only one fixed pattern p. However you must describe a general
method of constructing Np from any input pattern p.

2. Find several applications for pattern matching like this.

