
Hash Tables
COMP215: Design & Analysis of 

Algorithms



Today

• What is Hash Table?
• Operations for Hash Table.
• Applications.



Hash Tables
• A hash table (or hash map) is a data structure that implements an

associative array, mapping keys to values.
• Hash tables maintain an evolving set of objects associated with
keys.

• They maintain no ordering information whatsoever.
• Hash tables facilitate super-fast searches, which are also called
lookups in this context.

• Key Idea: It uses a hash function to compute an index (also called
a hash code or hash) into an array of buckets or slots.



Hash Tables: Supported Operations

• Lookup (Search): for a key k, return a pointer to an 
object in the hash table with key k (or report that no 
such object exists). 
– Running time O(1)

• Insert: given a new object x, add x to the hash table.
– Running time O(1)

• Delete: for a key k, delete an object with key k from the 
hash table, if one exists.
– Running time O(1)



Hash Tables vs. Other Data Structure

Feature Hash Table Array Linked List Binary Search 
Tree

Lookup Time O(1) O(n) O(n) O(log n)

Insert Time O(1) O(n) O(1) O(log n)

Delete Time O(1) O(n) O(1) O(log n)

Sorted Access No No No Yes



Applications

• Databases Indexing: Hash
tables are used to index
data in databases

• Caching: They allow for
quick storage and retrieval
of frequently accessed data.

• Symbol Tables in
Compilers: Compilers use
hash tables to keep track of
variables, function names,
and other identifiers.

• Routing Tables in
Networks: Enabling
efficient packet forwarding.



Applications
De-duplication



Applications
The 2-SUM Problem

O(n2)
O(nlogn) O(n)

A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 
T = 12



Hash function

• A function that takes input (key) and
returns a fixed-size integer (hash code).

• Function which hashes keys from the
universe of potential keys to indices in the
array

• Frequently makes use of modulo division
• Examples of Hash Functions:

– Division Method: 
• hash = key % table_size

– Multiplication Method: 
• hash = (A * key % 1) * table_size



Examples:

1. Given the keys {“Alice”, “Bob”, “Joseph”, “Chuck” }: 
Hash function: h(k) = len(k) – 1.

Insert into an empty hash table of size 6

2. Given the Keys: 27, 43, 35, 7, 42, 56 
Hash function: hash(key) = key % table_size
Insert into an empty hash table with size = 10.

•



Collisions
• What is a Collision?

– Occurs when two keys hash to the 
same index.

• Problem?
– Multiple values would map to the 

same location.

• Collision Resolution Techniques:
– Chaining: Store multiple elements 

in a linked list at each index.
– Open Addressing: Probe for the 

next available slot:
■ Probing Sequence
■ Double Hashing



Collision Resolution: Chaining
• Method: Each index in the table points to
a linked list (or another structure like a
binary tree).

• Example: If two keys collide, their values
are added to the list at that index.
• Pros: Easy to implement, handles
large data sets well.

• Cons: Performance can degrade if the
linked lists grow too long.



Collision Resolution: Open Addressing

• Method:
– If a collision occurs,
find another slot within
the table by probing.

– Each position of the
array stores 0 or 1
objects, rather than a
list



Open Addressing :Probe Sequences

• The object is stored in the first unoccupied position of
its key’s probe sequence

• Linear Probing: This method uses one hash function h, and defines
the probe sequence for a key k as h(k),followed by h(k)+1, followed by
h(k)+2, and so on.



Collision Resolution: Double Hashing

• Uses two hash functions.
– The first (h1(k)) tells you the first position of the probe 

sequence 
– The second (h2(k)) indicates the offset for subsequent 

positions. 

• For example, if h1(k) = 15 and h2(k) = 22: 
• The first place to look for an object with key k is position 15; 

failing that:
• position 37 (15+ 22); failing that, 

• position 59 (37+ 22); failing that, 
• Position 81 (59 +22); and so on.



Collisions

● What Makes for a Good Hash Function?
No matter which collision-resolution strategy we 

employ, hash table performance degrades with the 
number of collisions.



Load vs. Performance

Which hash table strategy is feasible for loads larger than 1?

Idealized performance of a hash table as a function of its
load α and its collision-resolution strategy




