K

KALAMAZOO

Dijkstra’s Shortest-Path Algorithm

COMP215: Design & Analysis of
Algorithms

KALAMAZOO
COLLEGE




Today

* The Single-Source Shortest Path Problem
* Dijkstra’s Algorithm
* Implementation and Running Time

KALAMAZOO
COLLEGE



The Single-Source Shortest Path Problem

* The Single-Source Shortest Path (SSSP) problem consists
of finding the shortest paths between a given vertex v
and all other vertices in the graph.

e The shortest path problem can be defined
for graphs whether undirected, directed, or mixed.

Problem: Single-Source Shortest Paths

Input: A directed graph G = (V, E), a starting vertex
s € V, and a nonnegative length {. for each edge e € E.

Output: dist(s,v) for every vertex v € V.

KALAMAZOO
COLLEGE



https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Mixed_graph

The Single-Source Shortest Path Problem

E= 852 T=125
* Reacall:
— The notation dist(s, v) denotes the J/
length of a shortest path from s to v. < W

— If there is no path at all from s to v, AR
then dist(s, v) is +. ,

— By the length of a path, we mean the ey
sum of the lengths of its edges. IR

— For instance, in a graph in which every } A A
edge has Iength 1, the length of a path - AT N B >
is just the number of edges in it. Y S s

— A shortest path from a vertex v to a N .-
vertex w is one with minimum length y
(among all v-w paths).

KALAMAZOO
COLLEGE




The Single-Source Shortest Path Problem

Quiz 9.1

Consider the following input to the single-source shortest
path problem, with starting vertex s and with each edge
labeled with its length:

What are the shortest-path distances to s, v, w, and ¢,
respectively?

a8l 0123
b) 0,1,3,6
¢) 0,1,4,6

d) 0,1,4,7

What are the shortest-path distances
to S,C,D, and E, respectively?
(A—®)

KALAMAZOO
COLLEGE




The Single-Source Shortest Path Problem

* Assumptions:
— For concreteness, we assume
throughout input graph is
directed.

— The length of every edge is
nonnegative.

KALAMAZOO
COLLEGE



The Single-Source Shortest Path Problem

« Why Not Breadth-First Search?

— Breadth-first search computes the minimum number
of edges in a path from the starting vertex to every
other vertex.

— This is the special case of the single-source shortest
path problem in which every edge has length 1.

— With general nonnegative edge lengths, a shortest
path need not be a path with the fewest number of
edges.

KALAMAZOO
COLLEGE



Dijkstra’s Algorithm

« Dijkstra's is an algorithm for finding
the shortest paths between nodes in
a weighted graph.

* Discovered by Edsger W. Dijkstra in
1956 (“in about twenty minutes,” he
said in an interview many years
later).

« Each iteration of its main loop
processes one new vertex.

« The algorithm’s sophistication lies in
its clever rule for selecting which
vertex to process next: the not-yet-
processed vertex that appears to be
closest to the starting vertex

KALAMAZOO
COLLEGE




Dijkstra’s Algorithm

Dijkstra

processed not-yet-processed

Input: directed graph G = (V, F) in adjacency-list
representation, a vertex s € V', a length /., > 0 for
each e € F.

Postcondition: for every vertex v, the value len(v)

equals the true shortest-path distance dist(s,v). candidates
for (v',w)

// Initialization
1 X = {s}
2 len(s) := 0, len(v) := +o0 for every v # s
// Main loop
3 while there is an edge (v, w) with v € X, w ¢ X do

the frontier

4 (v*,w*) := such an edge minimizing len(v) + £y,
5 add w* to X
6 len(w™) 1= len(v™) 4+ Ly 1+ ——

—

KALAMAZOO
COLLEGE




Dijkstra’s Algorithm

 Examples

KALAMAZOO
COLLEGE



Dijkstra’s Algorithm

 Dijkstra’s algorithm applies equally well to undirected
graphs after

* You should not use Dijkstra’s algorithm in applications
with negative edge lengths. Why?

5 6

(D—(

KALAMAZOO
COLLEGE



Dijkstra’s Algorithm

Problem 9.1 Consider a directed graph G with distinct and non-
negative edge lengths. Let s be a starting vertex and ¢ a destination
vertex, and assume that GG has at least one s-t path. Which of the
following statements are true? (Choose all that apply.)

a) The shortest (meaning minimum-length) s-¢ path might have
as many as n — 1 edges, where n is the number of vertices.

b) There is a shortest s-t path with no repeated vertices (that is,
with no loops).

c) The shortest s-t path must include the minimum-length edge

of GG.

d) The shortest s-t path must exclude the maximum-length edge

of G.

KALAMAZOO
COLLEGE




Data Structure 13-

 The reason of using a data structure is to organize data so you
can access it quickly and usefully.

— The queue data structure, used in our linear-time
implementation of breadth-first search

— The stack data structure, which was crucial in our iterative
implementation of depth-first search s @) s

5] 0000 o4

ouT

KALAMAZOO
COLLEGE




Data Structure

 What are the pros and cons of different data structures, and
how should you choose which one to use in a program?

— In general, the more operations a data structure supports,
the slower the operations and the greater the space
overhead

* Principle of Parsimony: Choose the simplest data structure
that supports all the operations required by your application.

* Cleverly organizing your data can dramatically improve a
program’s running time

KALAMAZOO
COLLEGE




Heap Data Structure

10

Heap

15 30 40 50

40 50 100 40 10 15 50 40

oG

A heap is a data structure that keeps track of an evolving set of
objects with keys and can quickly identify the object with the
smallest key.

* Examples:

— objects might correspond to employee records, with keys
equal to their identification numbers.

— They might be the edges of a graph, with keys corresponding
to edge lengths.

— Events scheduled for the future, with each key indicating the
time at which the event will occur

KALAMAZOO
COLLEGE



Heap

* Basic Operations
— Insert: given a heap H and a new object x, add x to H.

— ExtractMin: given a heap H, remove and return from
H an object with the smallest key (or a pointer to it).

(1)

| Nl
KALAMAZOO
COLLEGE



Heap

| é/ (4 ; 0)
* Other operations:
— FindMin: given a heap H, return an object with the smallest

key (or a pointer to it).

— Heapify: given objects x1, . . . ,xn, create a heap containing
them.

— Delete: given a heap H and a pointer to an object x in H,
delete x from H.

KALAMAZOO
COLLEGE




Heap

Operation Running time
INSERT O(logn)
EXTRACTMIN O(logn)
. FINDMIN | o)
HEAPIFY O(n)
DELETE O(logn)

* When to Use a Heap?

— If your application requires fast minimum (or maximum)
computations on a dynamically changing set of objects, the heap is
usually the data structure of choice.

KALAMAZOO
COLLEGE



Heaps

* Add the following elements to a Minheap:
15,100, 67, 45, 12, 40, 7, 30, 4

KALAMAZOO
COLLEGE



Heap (Applications)

HeapSort
* Sorting:
’ Input: array A of n distinct integers.
Output: array B with the same integers, sorted from
smallest to largest.

H = empty heap

for : =1 ton do
INSERT Al7] into H

for =1 ton do
B|i] := EXTRACTMIN from H

Quiz 10.1

What’s the running time of HeapSort, as a function of the
length n of the input array?

a) O(n)
b) O(nlogn)
c) O(n?)

d) O(n?logn)

KALAMAZOO
COLLEGE




Speeding Up Dijkstra’s Algorithm

* The concrete plan is to store the as-yet-unprocessed vertices (V — X
in the Dijkstra pseudocode) in a heap, while maintaining the
following invariant.

Invariant

The key of a vertex w € V — X is the minimum Dijkstra
score of an edge with tail v € X and head w, or +o00 if no
such edge exists.

key(w) = min len(v) + £y

(V) EE : VEX e, e’

Dijkstra score

KALAMAZOO
COLLEGE




Speeding Up Dijkstra’s Algorithm

D e W N

Dijkstra (Heap-Based, Part 1)

Input: directed graph G = (V, E) in adjacency-list
representation, a vertex s € V', a length £, > 0 for
each e € E.

Postcondition: for every vertex v, the value len(v)
equals the true shortest-path distance dist(s,v).

// Initialization
X = empty set, H := empty heap
key(s) :=0
for every v # s do
key(v) := +oc
for every v € V do
INSERT v into H // or use HEAPIFY
// Main loop

7 while H is non-empty do

o ™

10

11

w* := EXTRACTMIN(H )

add w* to X

len(w*) := key(w™)

// update heap to maintain invariant
(to be announced)

13
14
15

Dijkstra (Heap-Based, Part 2)

// update heap to maintain invariant
for every edge (w*,y) do
DELETE y from H
key(y) = min{key(y), len(w*) + Ly}
INSERT y into H

KALAMAZOO
COLLEGE




Speeding Up Dijkstra’s Algorithm

KALAMAZOO
COLLEGE



Running Time

The overall running time is O((m+n) log n)

KALAMAZOO
COLLEGE



