
Dijkstra’s Shortest-Path Algorithm
COMP215: Design & Analysis of

Algorithms

Today

• The Single-Source Shortest Path Problem
• Dijkstra’s Algorithm
• Implementation and Running Time

The Single-Source Shortest Path Problem

• The Single-Source Shortest Path (SSSP) problem consists
of finding the shortest paths between a given vertex v
and all other vertices in the graph.

• The shortest path problem can be defined
for graphs whether undirected, directed, or mixed.

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Mixed_graph

The Single-Source Shortest Path Problem

• Recall:
– The notation dist(s, v) denotes the

length of a shortest path from s to v.
– If there is no path at all from s to v,

then dist(s, v) is +∞.
– By the length of a path, we mean the

sum of the lengths of its edges.
– For instance, in a graph in which every

edge has length 1, the length of a path
is just the number of edges in it.

– A shortest path from a vertex v to a
vertex w is one with minimum length
(among all v-w paths).

The Single-Source Shortest Path Problem

What are the shortest-path distances
to S,C,D, and E, respectively?

The Single-Source Shortest Path Problem

• Assumptions:
– For concreteness, we assume

throughout input graph is
directed.

– The length of every edge is
nonnegative.

The Single-Source Shortest Path Problem

• Why Not Breadth-First Search?
– Breadth-first search computes the minimum number

of edges in a path from the starting vertex to every
other vertex.

– This is the special case of the single-source shortest
path problem in which every edge has length 1.

– With general nonnegative edge lengths, a shortest
path need not be a path with the fewest number of
edges.

Dijkstra’s Algorithm

• Dijkstra's is an algorithm for finding
the shortest paths between nodes in
a weighted graph.

• Discovered by Edsger W. Dijkstra in
1956 (“in about twenty minutes,” he
said in an interview many years
later).

• Each iteration of its main loop
processes one new vertex.

• The algorithm’s sophistication lies in
its clever rule for selecting which
vertex to process next: the not-yet-
processed vertex that appears to be
closest to the starting vertex

Dijkstra’s Algorithm

Dijkstra score

Dijkstra’s Algorithm

• Examples

Dijkstra’s Algorithm

• Dijkstra’s algorithm applies equally well to undirected
graphs after small cosmetic changes

• You should not use Dijkstra’s algorithm in applications
with negative edge lengths. Why?

Dijkstra’s Algorithm

Data Structure

• The reason of using a data structure is to organize data so you
can access it quickly and usefully.
– The queue data structure, used in our linear-time

implementation of breadth-first search
– The stack data structure, which was crucial in our iterative

implementation of depth-first search

Data Structure

• What are the pros and cons of different data structures, and
how should you choose which one to use in a program?
– In general, the more operations a data structure supports,

the slower the operations and the greater the space
overhead

• Principle of Parsimony: Choose the simplest data structure
that supports all the operations required by your application.

• Cleverly organizing your data can dramatically improve a
program’s running time

Heap

• A heap is a data structure that keeps track of an evolving set of
objects with keys and can quickly identify the object with the
smallest key.

• Examples:
– objects might correspond to employee records, with keys

equal to their identification numbers.
– They might be the edges of a graph, with keys corresponding

to edge lengths.
– Events scheduled for the future, with each key indicating the

time at which the event will occur

Heap

• Basic Operations
– Insert: given a heap H and a new object x, add x to H.
– ExtractMin: given a heap H, remove and return from

H an object with the smallest key (or a pointer to it).

Heap

• Other operations:
– FindMin: given a heap H, return an object with the smallest

key (or a pointer to it).
– Heapify: given objects x1, . . . ,xn, create a heap containing

them.
– Delete: given a heap H and a pointer to an object x in H,

delete x from H.

Heap

• When to Use a Heap?
– If your application requires fast minimum (or maximum)

computations on a dynamically changing set of objects, the heap is
usually the data structure of choice.

Heaps
• Add the following elements to a Minheap:

15, 100, 67, 45, 12, 40, 7, 30, 4

Heap (Applications)

• Sorting:

Speeding Up Dijkstra’s Algorithm

• The concrete plan is to store the as-yet-unprocessed vertices (V − X
in the Dijkstra pseudocode) in a heap, while maintaining the
following invariant.

Speeding Up Dijkstra’s Algorithm

Speeding Up Dijkstra’s Algorithm

Running Time

The overall running time is O((m+n) log n)

