NP Complete Problems

COMP 215 Lecture 20

Complexity Theory

Complexity theory 1s a research area unto itself.

The central project is classifying problems as either
tractable or intractable.

~ Tractable — Worst case polynomial time. W (n)€O(p(n))
~ Intractable — Not worst case polynomial time. W (n)2O(p(n))

Another area 1s computability theory.

— The central project there 1s classifying problems as either
computable or non-computable.

Turing machines are important tools in both areas.

We'll manage without Turing machines.

Complexity Theory

* A problem can fall into one of three categories:

— Tractable — we have a polynomial time algorithm.

* Examples?

— Intractable — 1t has been proved that there can be no
polynomial time algorithm.

* Examples?

~— Unknown — there is no polynomial time algorithm. But it has
never been proved that such an algorithm cannot exist.

* Examples?
* As a matter of convenience we will restrict ourselves to
decision problems.

The Sets P and NP

P 1s the set of all problems that can be solved with
polynomial time algorithms.

NP is the set of all problems that can be solved with non-
deterministic polynomial time algorithms. (?)

A non-deterministic algorithm 1s allowed to guess a
solution 1n one step.

— Actually 1t 1s allowed to guess all solutions simultaneously.
It must then verity the solution in polynomial time.
In other words, for a problem to be in NP.

~ It need not be possible to find a solution in polynomial time.

— But 1t must be possible to check a solution in polynomial time.

Problems That Aren't in NP

* It 1s hard to prove that problems are not in NP for
basically the same reason it 1s hard to prove that
problems are not in P.

* Of course non-computable problems are clearly not in
NP.

— Halting problem etc.

* Problems with non-polynomial size output don't count
because they aren't decision problems.

Relationship Between P and NP

Every problem in P is definitely in NP.
~— non-deterministically do nothing.

~ then apply the polynomial time algorithm to find (and trivially
verify) the solution.

It 1s unknown whether every problem in NP 1s also in P.
— If so P =NP.

Easy enough to show that pxnp
— Find one problem that 1s in NP, but notin P :)

A little trickier to show that P = NP.

— We would need to have a polynomial time algorithm for every
problem in NP.

— This 1s not as daunting as it sounds...

CNF Satistiability

A logical expression in conjunctive normal form 1s a
sequence of OR clauses separated by ANDs:

(x, Vx,VI)A(X VX)A(x V)

CNF satisfiability 1s the problem of determining whether
or not there 1s some variable assignment that makes a
CNF expression true.

This problem is in NP.

Currently no known polynomial algorithm.

Cook-Levin Theorem

CNF Satistiability 1s an NP-Complete problem.

For a problem to be NP-complete
— It must be in NP.

~— A polynomial time algorithm for the problem must allow the
solution of any problem in NP in polynomial time.

We won't go through the proof.

This means that to prove P=NP, we only need to find a
polynomial time algorithm for this one problem.

NP-Completeness

Are there other NP-Complete problems?

— There are many.

Do we need a Cook-Levin theorem for each one?
— No.

The key 1s reductions (or translations).

We say that problem A 1s polynomial time many-one
reducible reducible to problem B if there 1s a polynomial
time algorithm that converts any instance of problem A
to an 1nstance of problem B.

— If we could decide B in polynomial time, we could decide A in
polynomial time.

— Notation: AxB .

NP-Completeness

* We can show that some new problem i1s NP-Complete by
showing that.

CNF Satistiability oc New Problem

* Or, since any sequence of polynomial time
transformations 1s still in polynomial time:

CNF Satisfiability oc Any Number of Other Problemsoc New Problem

The Clique Decision Problem 1s NP Complete

* A clique 1s a subset of vertices in a graph such that every
vertex 1s connected to every other vertex.

* The clique decision problem: given a graph G, and an
integer k, determine if G contains a clique of size k.

* First question: 1s this problem in NP?

* Second question: 1s it NP-complete?

Reducing CNF SAT to CLIQUE

* We are given a boolean expression composed of k

clauses:
B=C ,AC,AAC,

* We convert this to a graph G = (V,E) as follows:

— A new vertex is created for every literal in every clause:
V=\ly,i] such that y is a literal in clause C |

— All vertices are connected unless they were generated from the
same clause, or they represent negations of the same literal:
E={(|y,il],|z,j|) suchthat i#j and 7#y|
* Can this transformation be performed in polynomial
time?

Reducing CNF SAT to CLIQUE

* Now we need to show that B 1s satistiable if and only 1f
G has a clique of size k.

* If B s satisfiable G has a clique of size k.

— If B 1s satisfiable then there 1s some way to assign variables so
that each clause has at least one true literal.
— Select a set of vertices V' such that

V'=lly,i| such that y is a true literal from C |

— Every member of V' must be connected to every other because
* each 1s from a different clause.

* if y 1s true in both clauses, then it 1s impossible for it to be negated in
one and not the other.

Reducing CNF SAT to CLIQUE

* If G has a clique of size k, B 1s satisfiable.

Every member of the clique must have been generated from a
different clause.

Select the set of variables represented by the k vertices in the

clique:
S=|y such that |y,i|€V']

Assign values to the variables as follows:
true if x €S

false if x €S

X.—

l

Assign all other literals arbitrarily.

This assignment guarantees that each clause has at least one
true literal.

More Reductions

* It 1s known that the Hamiltonian Circuits decision
problem 1s NP-Complete.

— Given a graph G 1s there a tour — a path that starts at one
vertex, visits each vertex in the graph once, and ends up at the
starting vertex.

* We can use this fact to prove that the undirected
traveling salesperson decision problem is NP-Complete.

* We need a reduction from Hamiltonian Circuits to
undirected TSP.

Reducing from Hamiltonian Circuit to TSP

Given an undirected graph G, create a completely
connected graph G' with the same vertices.

Set the edge weights in G' to 1 if the corresponding edge
existed in G.

Set them to 2 if not.

G contains a tour if and only 1f G' has a tour of length n,

where n 1s the number of vertices.

Therefore the undirected traveling salesperson decision
problem 1s NP-Complete.

Undirected TSP to TSP

We now know that the undirected TSP is NP-Complete.
What about the directed TSP?

There 1s an easy reduction from undirected TSP to
directed TSP.

Given an undirected weighted graph G, create a directed
weighted graph G' with two edges for every edge in G.

— A forward edge and a backward edge, both with weight equal
to the weight of the original edge in G.

G has a tour of length d 1f and only if G' has a tour of
length d.

Therefore the directed TSP 1s NP-complete

Facts About NP Complete Problems

Many Many Problems are NP-Complete:

— Graph 3-colorability, vertex cover, Hamiltonian path, subset-
sum, 0-1 knapsack

Obviously there 1s no known problem that 1s in P, and 1s
also NP complete.

There are problems that are in NP, are not known to be
in P, and are not known to be NP complete:
— Graph 1somorphism.

— Until 2002 the primes problem fell into this category.

If an NP problem 1s found that 1s not in P and 1s not NP
complete then, obviously, P# NP.

The Class coNP

A problem is in coNP if its complement 1s in NP.

The complement of a problem is the problem that always
has the opposite answer.

The complement of the traveling salesman problem:

~ Does there not exist a path of length k in graph G?

This problem is clearly in coNP — because we know that
TSP is in NP.

Is this problem in NP?
Nobody knows.

Not easy to see how to verity that graph does not have a
length k path.

Turing Reducibility

* Qur previous notion of reducibility required converting
an instance of one problem to an instance of another
problem 1n polynomial time.

* Turing reducibility, denoted Ao_B means that we can
solve problem A using a hypothetical solution to
problem B.

* Polynomial time Turing reducibility means that we can
solve problem A in polynomial time using a hypothetical
polynomial time algorithm for problem B.

NP-Hard

* A problem 1s NP-Hard 1if every problem in NP 1s
polynomial time Turing reducible to it.

— A problem need not be in NP to be NP-Hard.

* The TSP decision problem 1s NP-complete.

* The TSP optimization problem 1s NP-Hard, but not NP-
complete.

— It cannot be in NP, because it 1s not a decision problem.

— It 1s NP hard because any problem in NP can be reduced to the
TSP decision problem, and

— The TSP decision problem can be Turing reduced to the TSP
optimization problem.

NP-Easy, NP-Equivalent

A problem A 1s NP-Easy if it 1s polynomial time Turing
reducible to some problem B in NP.

- A B
Problems 1in NP-Easy:

~— Every problem in P, every problem in NP.

— Problems not in NP that have a polynomial time algorithm.

~ Some other problems not in NP — traveling salesperson
optimization problem.

A problem 1s NP-Equivalent if it 1s both NP-Hard and
NP-Easy.

P=NP iff there are polynomial time algorithms for all
NP-Equivalent problems.

More Complexity Classes

* PSPACE - 1s the class of decision problems that can be
solved using polynomial space.

* P is contained in PSPACE.

~ Do you see why?

More Complexity Classes

PSPACE - 1s the class of decision problems that can be
solved using polynomial space.

P 1s contained in PSPACE.

— Because an algorithm that finishes in polynomial time only has
time to f1ll polynomial space.

NP 1s contained in PSPACE.

— This 1s harder to see.
It 1s not known whether P = NP = PSPACE.

EXP 1s the class of problems that can be solved 1n
exponential time.

— EXP contains PSPACE. (Why?)

— It is known that P # EXP.

EXPSPACE

* I'll bet you can guess...

* Obviously EXP 1s in EXPSPACE

Example of a PSPACE Complete Problem

TQBF 1s PSPACE-Complete.
TQBF 1s the problem of determining whether a fully

quantified boolean formula 1is true.

A fully quantified boolean formula looks like:

Vx 3x,|x,=x,]

Y and 3 are quantifiers. A formula 1s fully qualified 1f
every variable 1s quantified.

A PSPACE-hard problem is finding an optimal policy in
a finite horizon partially observable Markov decision
problem.

