NP Complete Problems

COMP 215 Lecture 20

Complexity Theory

- Complexity theory is a research area unto itself.
- The central project is classifying problems as either tractable or intractable.
 - Tractable Worst case polynomial time. W(n)∈O(p(n))
 - Intractable Not worst case polynomial time. $W(n) \notin O(p(n))$
- Another area is computability theory.
 - The central project there is classifying problems as either computable or non-computable.
- Turing machines are important tools in both areas.
- We'll manage without Turing machines.

Complexity Theory

- A problem can fall into one of three categories:
 - Tractable we have a polynomial time algorithm.
 - Examples?
 - Intractable it has been proved that there can be no polynomial time algorithm.
 - Examples?
 - Unknown there is no polynomial time algorithm. But it has never been proved that such an algorithm cannot exist.
 - Examples?
- As a matter of convenience we will restrict ourselves to decision problems.

The Sets P and NP

- P is the set of all problems that can be solved with polynomial time algorithms.
- NP is the set of all problems that can be solved with nondeterministic polynomial time algorithms. (?)
- A non-deterministic algorithm is allowed to guess a solution in one step.
 - Actually it is allowed to guess *all* solutions simultaneously.
- It must then verify the solution in polynomial time.
- In other words, for a problem to be in NP.
 - It need not be possible to *find* a solution in polynomial time.
 - But it must be possible to *check* a solution in polynomial time.

Problems That Aren't in NP

- It is hard to prove that problems are not in NP for basically the same reason it is hard to prove that problems are not in P.
- Of course non-computable problems are clearly not in NP.
 - Halting problem etc.
- Problems with non-polynomial size output don't count because they aren't decision problems.

Relationship Between P and NP

- Every problem in P is definitely in NP.
 - non-deterministically do nothing.
 - then apply the polynomial time algorithm to find (and trivially verify) the solution.
- It is unknown whether every problem in NP is also in P.
 - If so P = NP.
- Easy enough to show that $P \neq NP$
 - Find one problem that is in NP, but not in P :)
- A little trickier to show that P = NP.
 - We would need to have a polynomial time algorithm for every problem in NP.
 - This is not as daunting as it sounds...

CNF Satisfiability

• A logical expression in conjunctive normal form is a sequence of OR clauses separated by ANDs:

$$(x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_3) \land (x_1 \lor x_4)$$

- CNF satisfiability is the problem of determining whether or not there is some variable assignment that makes a CNF expression true.
- This problem is in NP.
- Currently no known polynomial algorithm.

Cook-Levin Theorem

- CNF Satisfiability is an NP-Complete problem.
- For a problem to be NP-complete
 - It must be in NP.
 - A polynomial time algorithm for the problem must allow the solution of any problem in NP in polynomial time.
- We won't go through the proof.
- This means that to prove P=NP, we only need to find a polynomial time algorithm for this one problem.

NP-Completeness

- Are there other NP-Complete problems?
 - There are many.
- Do we need a Cook-Levin theorem for each one?
 - No.
- The key is reductions (or translations).
- We say that problem A is polynomial time many-one reducible reducible to problem B if there is a polynomial time algorithm that converts any instance of problem A to an instance of problem B.
 - If we could decide B in polynomial time, we could decide A in polynomial time.
 - Notation: $A \propto B$.

NP-Completeness

• We can show that some new problem is NP-Complete by showing that.

CNF Satisfiability ∞ New Problem

• Or, since any sequence of polynomial time transformations is still in polynomial time:

CNF Satisfiability ∝ Any Number of Other Problems ∝ New Problem

The Clique Decision Problem is NP Complete

- A clique is a subset of vertices in a graph such that every vertex is connected to every other vertex.
- The clique decision problem: given a graph *G*, and an integer *k*, determine if *G* contains a clique of size *k*.
- First question: is this problem in NP?
- Second question: is it NP-complete?

Reducing CNF SAT to CLIQUE

• We are given a boolean expression composed of k clauses:

$$B = C_1 \wedge C_2 \wedge \cdots \wedge C_k$$

- We convert this to a graph G = (V,E) as follows:
 - A new vertex is created for every literal in every clause:

$$V = \{[y, i] \text{ such that } y \text{ is a literal in clause } C_i\}$$

- All vertices are connected *unless* they were generated from the same clause, or they represent negations of the same literal:

$$E = \{([y,i],[z,j]) \text{ such that } i \neq j \text{ and } \overline{z} \neq y\}$$

• Can this transformation be performed in polynomial time?

Reducing CNF SAT to CLIQUE

- Now we need to show that *B* is satisfiable if and only if *G* has a clique of size *k*.
- If *B* is satisfiable *G* has a clique of size *k*.
 - If B is satisfiable then there is some way to assign variables so that each clause has at least one true literal.
 - Select a set of vertices V' such that $V' = \{[y, i] \text{ such that } y \text{ is a true literal from } C_i\}$
 - Every member of V' must be connected to every other because
 - each is from a different clause.
 - if y is true in both clauses, then it is impossible for it to be negated in one and not the other.

Reducing CNF SAT to CLIQUE

- If G has a clique of size k, B is satisfiable.
 - Every member of the clique must have been generated from a different clause.
 - Select the set of variables represented by the k vertices in the clique:

$$S = \{ y \text{ such that } [y, i] \in V' \}$$

- Assign values to the variables as follows:

$$x_{i} = \begin{vmatrix} true & if & x_{i} \in S \\ false & if & \bar{x}_{i} \in S \end{vmatrix}$$

- Assign all other literals arbitrarily.
- This assignment guarantees that each clause has at least one true literal.

More Reductions

- It is known that the Hamiltonian Circuits decision problem is NP-Complete.
 - Given a graph G is there a tour a path that starts at one vertex, visits each vertex in the graph once, and ends up at the starting vertex.
- We can use this fact to prove that the undirected traveling salesperson decision problem is NP-Complete.
- We need a reduction from Hamiltonian Circuits to undirected TSP.

Reducing from Hamiltonian Circuit to TSP

- Given an undirected graph *G*, create a completely connected graph *G'* with the same vertices.
- Set the edge weights in G' to 1 if the corresponding edge existed in G.
- Set them to 2 if not.
- G contains a tour if and only if G' has a tour of length n, where n is the number of vertices.
- Therefore the undirected traveling salesperson decision problem is NP-Complete.

Undirected TSP to TSP

- We now know that the undirected TSP is NP-Complete.
- What about the directed TSP?
- There is an easy reduction from undirected TSP to directed TSP.
- Given an undirected weighted graph *G*, create a directed weighted graph *G'* with two edges for every edge in *G*.
 - A forward edge and a backward edge, both with weight equal to the weight of the original edge in G.
- G has a tour of length d if and only if G' has a tour of length d.
- Therefore the directed TSP is NP-complete

Facts About NP Complete Problems

- Many Many Problems are NP-Complete:
 - Graph 3-colorability, vertex cover, Hamiltonian path, subsetsum, 0-1 knapsack
- Obviously there is no known problem that is in P, and is also NP complete.
- There are problems that are in NP, are not known to be in P, and are not known to be NP complete:
 - Graph isomorphism.
 - Until 2002 the primes problem fell into this category.
- If an NP problem is found that is not in P and is not NP complete then, obviously, $P \neq NP$.

The Class coNP

- A problem is in coNP if its complement is in NP.
- The complement of a problem is the problem that always has the opposite answer.
- The complement of the traveling salesman problem:
 - Does there *not* exist a path of length *k* in graph *G*?
- This problem is clearly in coNP because we know that TSP is in NP.
- Is this problem in NP?
- Nobody knows.
- Not easy to see how to verify that graph does *not* have a length *k* path.

Turing Reducibility

- Our previous notion of reducibility required converting an instance of one problem to an instance of another problem in polynomial time.
- Turing reducibility, denoted $A \propto_T B$ means that we can solve problem A using a hypothetical solution to problem B.
- Polynomial time Turing reducibility means that we can solve problem A in polynomial time using a hypothetical polynomial time algorithm for problem B.

NP-Hard

- A problem is NP-Hard if every problem in NP is polynomial time Turing reducible to it.
 - A problem need not be in NP to be NP-Hard.
- The TSP decision problem is NP-complete.
- The TSP optimization problem is NP-Hard, but not NP-complete.
 - It cannot be in NP, because it is not a decision problem.
 - It is NP hard because any problem in NP can be reduced to the TSP decision problem, and
 - The TSP decision problem can be Turing reduced to the TSP optimization problem.

NP-Easy, NP-Equivalent

- A problem *A* is NP-Easy if it is polynomial time Turing reducible to some problem *B* in NP.
 - $-A \propto_T B$
- Problems in NP-Easy:
 - Every problem in P, every problem in NP.
 - Problems not in NP that have a polynomial time algorithm.
 - Some other problems not in NP traveling salesperson optimization problem.
- A problem is NP-Equivalent if it is both NP-Hard and NP-Easy.
- P=NP iff there are polynomial time algorithms for all NP-Equivalent problems.

More Complexity Classes

- PSPACE is the class of decision problems that can be solved using polynomial space.
- P is contained in PSPACE.
 - Do you see why?

More Complexity Classes

- PSPACE is the class of decision problems that can be solved using polynomial space.
- P is contained in PSPACE.
 - Because an algorithm that finishes in polynomial time only has time to fill polynomial space.
- NP is contained in PSPACE.
 - This is harder to see.
- It is not known whether P = NP = PSPACE.
- EXP is the class of problems that can be solved in exponential time.
 - EXP contains PSPACE. (Why?)
 - It is known that $P \neq EXP$.

EXPSPACE

- I'll bet you can guess...
- Obviously EXP is in EXPSPACE

Example of a PSPACE Complete Problem

- TQBF is PSPACE-Complete.
- TQBF is the problem of determining whether a fully quantified boolean formula is true.
- A fully quantified boolean formula looks like:

$$\forall x_1 \exists x_2 [x_1 = x_2]$$

- \forall and \exists are quantifiers. A formula is fully qualified if every variable is quantified.
- A PSPACE-hard problem is finding an optimal policy in a finite horizon partially observable Markov decision problem.