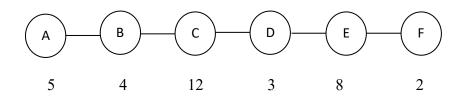
COMP215/Design & Analysis of Algorithms Quiz 3 20 points


Q1: [6 points] Fill in the space with the correct answer:

1.	One Dynamic programming follows a three-steps:			
	1.			
	2.			
	3.			

2. The knapsack problem can be solved using dynamic programming in O(_____) time.

- In n-vertex path graphs, a maximum-weight independent set can be computed using dynamic. programming in O(_____) time.
- 4. The Knapsack Reconstruction Algorithm runs in O(_____)time

Q2: [5 points]: Consider the input graph:

where vertices have their weights below them. What are the final array entries of the WIS algorithm, and which vertices belong to the MWIS? (Show your work)

Item	Value	Size
1	6	2
2	9	3
3	4	1
4	3	5
5	5	4

Q3 [9 points]: Consider an instance of the knapsack problem with five items:

and knapsack capacity C = 9. What are the final array entries of the Knapsack algorithm, and which items belong to the optimal solution? (Show your work)

Extra Paper for Solutions