
COMP 210: Data Structures
Description of Time Complexity

What is Time Complexity?

Time complexity is a way to measure how an algorithm’s runtime grows as the
size of its input increases. (This is also known as its growth function.) It is
particularly important when dealing with very large datasets.

Time complexity is estimated by calculating the number of instructions that
will be executed within a program, rather than by measuring the actual time
it takes to execute, since that can vary based on factors such as the computer
you’re using, how many other programs are running at the same time, or the
network load.

The “Big-Oh” Notation

To describe time complexity, we use Big-Oh notation. For example, an
algorithm might be classified as O(n) or O(logn). Think of Big-Oh as a simplified
way to talk about the worst-case scenario of a given algorithm. It gives us a
broad classification of how an algorithm’s performance scales with the size of its
input (n).

Common Big-Oh Classifications

Here are some of the most common Big-Oh complexities you’ll encounter, from
most efficient to least efficient.

O(1) - Constant Time An algorithm runs in constant time if its runtime
is the same no matter how big the input is. A perfect example is accessing an
element in an array by its index. It takes the same amount of time to get the 5th
element from an array of 10 items as it does from an array of 10 million items.

O(log n) - Logarithmic Time Algorithms with logarithmic time complexity
are very efficient. They work by repeatedly cutting the problem size in half. A
great example is a binary search. If you’re looking for a name in a sorted
phone book with 1,000 pages, you don’t have to check every page. You’d open
to the middle, see if the name is in the first or second half, and then repeat the
process, quickly narrowing down your search.

1



O(n) - Linear Time In a linear time algorithm, the runtime grows in direct
proportion to the size of the input. If you have to double the number of items
you process, the runtime will roughly double. A simple for loop that iterates
through every item in a list to find a specific value is a classic example of an
O(n) algorithm.

O(n log n) - Log-linear Time This is a very common complexity for efficient
sorting algorithms like Merge Sort and Quick Sort. It’s considered a “sweet
spot” – much better than quadratic time (O(n2)) but not quite as fast as linear
time (O(n)).

O(n2) - Quadratic Time An algorithm runs in quadratic time when its
runtime is proportional to the square of the input size. This often happens with
nested loops, where for every element in the outer loop, you iterate through
the entire input again in the inner loop. A simple Bubble Sort is an example
of an O(n2) algorithm. If your input size doubles, the runtime increases by a
factor of four. More generally, an algorithms runs in Polynomial Time if its
runtime is proportional to a polynomial function of its input size, such as O(n3)
or O(n5).

O(2n) - Exponential Time An algorithm runs in exponential time when
its runtime is proportional to a function with the input size in the exponent,
such as O(2n) or O(3n). For example, an algorithm whose runtime doubles with
each addition to the input size would be exponential. This type of complexity is
generally found in “brute-force” algorithms that test every subset or combination
of the n inputs.

O(n!) - Factorial Time In a factorial algorithm, the runtime is proportional
to n!. This is a common variation of exponential time, that is is generally found
in “brute-force” algorithms that test all permutations of the n inputs where
ordering matters.

Exponential and Factorial algorithms are considered intractable because their
running times grow so quickly relative to the size of the input that it becomes
practically impossible to solve the problem in a reasonable amount of time, even
with powerful computers.

“Authored” by Gemini, with significant additions and editing by Alyce Brady,
25 September, 2025. Other sources include Wikipedia and GeeksForGeeks.

2


	COMP 210: Data Structures
	Description of Time Complexity
	What is Time Complexity?
	The “Big-Oh” Notation
	Common Big-Oh Classifications



