COMP 210: Data Structures

Review of References

In Java, a reference is a variable that stores the memory address of an object,
not the object itself. Think of it as a pointer or a handle to an object, similar
to how a street address pornts to a specific house. You use this reference to
access the object’s methods and fields. Actual objects are created with the new
keyword, and can then be assigned to a reference variable. If a reference variable
has not yet been assigned an object, it is a null reference.

MyObject obj; // Creates a null reference, no object

obj = new MyObject(); // Creates an object; obj now refers to it
obj.myMethod () ;

obj.myField = 10;

Primitive Types vs. References

It’s crucial to understand the difference between how Java handles primitive
types (like int, double, boolean) and reference types (all classes, including
String). When a variable of a primitive type is defined, space in memory is set
aside for a value of that type. On the other hand, when a variable of a class
type is defined, that merely creates space in memory for a reference to an object
of that type, but not for the object itself. No space is created for the actual
object until you use the new keyword, invoking the constructor and initializing
the object.

¢ Primitive Types: A variable directly stores the value.

int i; // Space for an int is set aside, but it has no initial value
int a = 5; // Space for an int is set aside, and it is initialized to 5

o Reference Types: A variable stores a reference (think of a memory
address) or null. The expression new MyObject() creates the actual
object in memory (specifically, on the heap).

MyObject obji; // Creates a null reference, no object
MyObject obj2 = new MyObject(); // Creates an object and a reference to it

Copied Values vs. Aliases

o Primitive Types: When you assign one primitive to another, the value
is copied.

int a = 5; // Space for an int is set aside, and it is initialized to 5



int b; // Separate space is created for b
b = a; // The value 5 is copied from 'a' to 'b'.
10; // 'b' remains 5.

a

¢ Reference Types: When you assign one reference variable to another, the
reference itself is copied, not the object. This means both variables
point to the exact same object in memory. Two (or more) references to
the same object are known as aliases of each other. In the example below,
if you modify the object using variable obj2, the change will be visible
through obj1 because they are both looking at the same thing.

MyObject objl = new MyObject();

MyObject obj2 = objl; // The reference (memory address) is copied.
// Both objl and obj2 now point to the same object.

Null References

A reference variable holds the special value null when it doesn’t point to any
object at all.

MyObject nullObji;
MyObject nullObj2 = null;

If you try to call a method or access a field on a null reference, you’ll get a
NullPointerException at runtime. This is a very common error for students
to encounter. It’s a key part of memory management in Java and is a frequent
topic in debugging.

Alyce Brady, based on an early draft by Gemini, 26 September, 2025.



	COMP 210: Data Structures
	Review of References
	Primitive Types vs. References
	Copied Values vs. Aliases
	Null References



