COMP 210: Data Structures

ArrayList and LinkedList

Java’s ArrayList and LinkedList classes both implement the List interface.

ArrayList of References

An ArrayList is always a list of references to objects, not a list of actual object.

Index ArrayList Objects
0 | x——]--------| object 1 |
1 I__“;::I————————::;__;‘;;;;;_2 somewhere else
2 I____;::I————> object 3 somewhere different
3 I__“;::I ——————— > object 4 yet another place
4 1 el object 51
s o0
s 1

The most common code pattern for stepping through an ArrayList is:

for (MyObject obj : myList)
{
obj.doSomething() ;

}
or the older for loop style:

for (int 1 = 0; i < myList.size(); i++)
{
MyObject obj = myList.getElement(i);
obj.doSomething() ;

LinkedList of Nodes

A LinkedList is a list of nodes, where each node contains a reference to an object

representing an element in the list and a reference (or pointer) to the next node
in the list.

Each LinkedList Node is a tuple (pairing) of (1) a reference to an object and (2)
a reference to the next node in the list, often called a pointer. The last node in
the list has a null reference as its “next” node.

The most common code pattern for stepping through a LinkedList is:

for (MyObject obj : myList)
{

obj.doSomething() ;
}

Note that the for-each style loop is the same for a Java ArrayList or LinkedList.
You can use this type of loop for any collection that implements the Iterable
interface, as both ArrayList and LinkedList do.

Another diagram

Although we often draw neat diagrams of linked lists like the first one above,
the nodes and the objects may be placed anywhere in memory. Each reference

specifies where a node’s object can be found or where the next node can be
found.

Alyce Brady, 27 September, 2025

	COMP 210: Data Structures
	ArrayList and LinkedList
	ArrayList of References
	LinkedList of Nodes
	Another diagram

