
Data Structures
Iterators
In Java, Iterator is an interface within the java.util package used to traverse
the elements of a collection sequentially. It allows you to access and potentially
remove elements from a collection without needing to know the collection’s
underlying implementation details.

Key methods of the Iterator interface:

• boolean hasNext(): This method returns true if there are more elements
in the iteration, and false otherwise.

• E next(): This method returns the next element in the itera-
tion and advances the iterator’s internal pointer. It throws a
NoSuchElementException if there are no more elements.

• void remove(): This optional method removes the last element returned
by next() from the underlying collection. It can only be called once per
call to next(), and attempting to call it at other times or multiple times
after a single next() call will result in an IllegalStateException.

Iterator and the enhanced for-each loop:

The enhanced for-each loop (introduced in Java 5), which can be used for simple
iteration without element removal, uses an Iterator internally. For example:

List<String> names = new ArrayList<>();
// Populate list
for (String name : names)
{

System.out.println(name);
}

How to use an Iterator explicitly:

• Obtain an Iterator: Call the iterator() method on a Collection object
(e.g., ArrayList, HashSet, LinkedList) to get an Iterator object for
that collection.

Iterator<String> it = names.iterator();

• Iterate through elements: Use a while loop with hasNext() and next()
to process each element.

while (it.hasNext())
{

String name = it.next();
System.out.println(name);

}

1



• Remove elements (optional): If needed, use the remove() method of the
iterator to safely remove elements during iteration.

while (it.hasNext())
{

String name = it.next();
if (name.equals("John"))
{

it.remove(); // Removes "John" from the 'names' list
}

}

Exceptions:

There are several exceptions that can be thrown by the remove method or other
code when an Iterator is active.

• UnsupportedOperationException: If the remove operation is not sup-
ported by this iterator

• IllegalStateException: If the next method has not yet been called or
the remove method has already been called after the last call to the next
method.

• ConcurrentModificationException: Modifying the underlying
collection directly (e.g., using add() or remove() methods of
the collection itself) while an Iterator is active will lead to a
ConcurrentModificationException when next() is called. Use
the Iterator’s remove() method for safe modification during iteration.

Additional Functionality:

• ListIterator: For List implementations, a more specialized
ListIterator is available, which provides additional functionali-
ties like bidirectional traversal (hasPrevious(), previous()) and element
modification (set(), add()).

• forEachRemaining(): Since Java 8, the Iterator interface includes a
forEachRemaining() method, allowing you to process remaining elements
using a lambda expression.

From AI Overview after googling “Java iterators”; minor editing by Alyce Brady,
2 October, 2025.

2


	Data Structures
	Iterators
	Key methods of the Iterator interface:
	Iterator and the enhanced for-each loop:
	How to use an Iterator explicitly:
	Exceptions:
	Additional Functionality:



