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Background
@ Exceptions are all subclasses of the class throwable.

@ Error subclass is for “hard” errors such as catastrophic
error.

@ Run-time exceptions are for run-time errors that may (or
may not) be fixed on the fly.
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Figure: The Class throwable
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@ You should never throw an error, only an exception
@ What exceptions a method can throw must be documented

@ What exceptions a method can throw are part of the
method signature

@ You must instantiate an exception when you throw it
@ A good place to start looking:

https://docs.oracle.com/javase/tutorial/essential/exceptions/throwing.html



@ You should never throw an error, only an exception
@ What exceptions a method can throw must be documented

@ What exceptions a method can throw are part of the
method signature

@ You must instantiate an exception when you throw it
@ A good place to start looking:

https:/docs.oracle.com/javase/tutorial/essential/exceptions/throwing.html



Introduction Creating an Exception throwing a Custom Exception try-catch Blocks
oooe [e]e]e} 0000000

Exceptions in Java

What to throw

@ You should never throw an error, only an exception
@ What exceptions a method can throw must be documented

@ What exceptions a method can throw are part of the
method signature



Introduction Creating an Exception throwing a Custom Exception try-catch Blocks
oooe [e]e]e} 0000000

Exceptions in Java

What to throw

@ You should never throw an error, only an exception
@ What exceptions a method can throw must be documented

@ What exceptions a method can throw are part of the
method signature

@ You must instantiate an exception when you throw it



Introduction Creating an Exception throwing a Custom Exception try-catch Blocks
oooe [e]e]e} 0000000

Exceptions in Java

What to throw

@ You should never throw an error, only an exception
@ What exceptions a method can throw must be documented

@ What exceptions a method can throw are part of the
method signature

@ You must instantiate an exception when you throw it
@ A good place to start looking:

https://docs.oracle.com/javase/tutorial/essential/exceptions/throwing.html



0 Introduction
@ Exceptions in Java

Q Creating an Exception
@ Extending the class Exception

e throwing a Custom Exception

0 try-catch Blocks
@ try
@ catch
@ More on Catching Exceptions



Introduction Creating an Exception throwing a Custom Exception try-catch Blocks
0000 @00 0000000

Extending the class Exception

Creating an Exception to throw

You should write your own exception classes if you answer yes
to any of the following questions; otherwise, you can probably
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@ Do you need an exception type that isn’t represented by
those in the Java platform?
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@ For readable code, it's good practice to append the string
Exception to the names of all classes that inherit (directly
or indirectly) from the Exception class.

@ If a client can reasonably be expected to recover from an
exception, make it a checked exception. If a client cannot
do anything to recover from the exception, make it an
unchecked exception.
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Creating a StackEmptyException

Suppose you wish to create an exception if a user tries to
pop () an empty stack.

@ Change the method signature: element method pop ()
throws StackEmptyException
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public element pop () throws
StackEmptyException {

if (this.isEmpty())

{

throw new StackEmptyException;
}
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@ There are two types of exceptions (for now)

@ Checked Exceptions (exceptions the user can fix)

@ If the user can fix it, catch it

@ Unchecked Exceptions (exceptions the user can't fix)
@ No one can help, don’t catch it.

@ Exceptions that are not caught abort execution.
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If you can fix the error (with or without user “help”) you should
surround statements that can cause the error with a t ry block.
try f

target = myStack.pop();

}
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catch

catch Blocks

Once an exception has been thrown, you have three choices
@ Ignore the error and allow the program to terminate
@ catch the error and fix it

@ catch the error and have the user fix it (enter a different
file name???7?)



int x = 10;
int y = 18;
try{
int num= x/y;
System.out.println("next-statement: Inside try block™);
Jcatch(Exception ex)
{
System.out.println("Exception™);

s
System.out.println("next-statement: Outside of try-catch");

Qutput:

next-statement: Inside try block
next-statement: Outside of try-catch

Figure: From:
http://beginnersbook.com/2013/05/flow-in-try-catch-finally/



try-catch Blocks
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More on Catching Exceptions

Multiple catch Blocks

If a t ry block can throw more than one exception that you can
fix, you will need a catch block for each one.

If you wish some common code to be executed after exceptions
occur, you can place that ina finally block.
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More on Catching Exceptions

Example of try-catch-finally Blocks

class TestExceptions {
static void myMethod(int testnum) throws Exception {
System.out.println ("start - myMethod");
if (testnum == 12)

throw new Exception();
system.out.println(”end - myMethod");
return;
1
public static void main(String args[]) {
int testnum = 12;
try {
System.out.println("try - first statement™);
myMethod (testnum);
System.out.println(™try - last statement™);
}
catch ( Exception ex) {

System.out.println("An Exception™);

¥
finally {

System. out. println( "finally") ;
}

System.out.println("Out of try/catch/finally - statement™);



Output:

try - first statement

start - myMethod

An Exception

finally

Out of try/catch/finally - statement

Figure: Output from the Example
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