The Halting Problem
P vs. NP




Halting Problem Motivation...

* Infinite loops are a problem:

x = 10;
while x < 20,

x=x-1;

end

* Why don't compilers check for this?

* Can't be done (perfectly). We'll see a proof by
contradiction.



HALT program

* Assume we have a program HALT:
— Take a program description, as well as a program 1nput.
— Returns “halt” if the program halts.
— Returns “loops™ if the program loops forever.

<P’I> (X4 29 (44 29
e ——» “halts” or “loops

(this follows a proof from Sipser's Introduction
to the Theory of Computation, 2006




A New Machine...

* Let's create a new program D, that uses HALT as
a subroutine.

* D takes a program description as input.
— Sends the program as both program and input to HALT.
— If HALT says “halt” D enters an infinite loop.
— If HALT says “loops” D halts.

\,‘5
\ Loop forever

<P> <P P> -<
—>
Halt




The Contradiction...

* Now we pass <D> to the program D.

* What happens?
— If HALT tells D that D halts on input <D>, then D loops

forever on input <D>.
— If HALT tells D that D loops forever on input <D>, then
D halts on input <D>.

D .

xS
> Loop forever

b“\Q
— >
% Halt

L.




What?

* We assumed the existence of a program HALT
that can always determine whether a program
will halt or run forever.

* We constructed a scenario in which, no matter
what answer HALT returns it 1s wrong.

* Therefore HALT cannot exist.



Rice's Theorem

* Any non-trivial property of programs 1s
undecidable.

* The halting problem 1s one example among
many.



Intractable Problems

* I’ve claimed that the traveling salesperson
problem 1s intractable.

* The best algorithm we’ve seen so far 1s O(N!).

* How can we know that there 1sn’t a better
algorithm? Maybe O(N)?

* The short answer 1s that we can’t.

* There 1s a longer answer that leads us to conclude
that TSP 1s very likely intractable...



P and NP

* P the set of problems that can be solved in
polynomial time by some algorithm.

* NP the set of problems that can be solved in
polynomial time by a non-deterministic
algorithm.

* Non-deterministic??



Non-Determinism

* Deterministic algorithm must find a solution.

* Non-deterministic algorithms get to guess a
solution, and only need to check it.

* Examples:
— Sorting has a deterministic polynomial time algorithm.
— TSP-decision problem has a non-deterministic polynomial
time algorithm.



What's the Difference?

* Everyone who 1s anyone believes that P and NP
are different sets.

* In other words, there are some problems that can
be solved in polynomial time using non-
determinism, but can’t be solved in polynomial
time deterministically.



An Aside: Reductions

* Problem A 1s said to be reducible to problem B if

— An efficient solution to B would yield an efficient
solution to A.

* Example:

— IS-THERE-A-PATH 1s reducible to FIND-SHORTEST-
PATH.

* Informally, if A reduces to B, B 1s at least as hard
as A.



NP-Completeness

* It turns out there 1s (at least) one problem that all

problems in NP reduce to: SAT.

— SAT 1s the problem of checking to see if a boolean
expression 1s satisfiable.

* Therefore an efficient solution to SAT would

yield an efficient solution to every problem in

NP.

— SAT 1s NP-Complete.
— SAT is (probably) intractable.

* (We won't prove this...)



Are There Other NP-Complete
Problems?

* If so, how would we show 1it?

* Reductions — Any problem that SAT reduces to 1s
also NP-Complete.

* There are many such problems.



