
Sound	Manipulations	
	
In	the	previous	section,	we	discussed	how	to	change	the	volume	of	a	sound	by	
modifying	the	values	of	the	amplitude	stored	in	each	sample.		We	used	a	loop	to	go	
through	each	sample	of	the	sound,	assigning	them	new	values.			This	is	similar	to	
using	loops	to	go	through	each	pixel	in	an	image	and	assigning	them	new	red,	green,	
and	blue	values.		Once	we	learned	how	to	loop	through	all	of	the	pixels	in	an	image,	
we	were	then	able	to	modify	the	ranges	to	go	through	subsets	of	the	pixels.		We	also	
added	conditional	statements	to	be	selective	about	which	pixels	we	wanted	to	
change,	as	well	as	how	to	use	the	color	values	of	pixels	in	one	image	to	set	the	color	
values		of	pixels	in	another	image.		By	using	different	ranges	of	samples,	we	can	
modify	sections	of	a	sound	instead	of	the	entire	sound	(like	in	the	
increaseAndDecrease	function	from	the	previous	activity),	and	by	using	
conditional	statements,	we	can	be	selective	about	which	samples	to	modify.		We	will	
also	see	that	we	can	use	the	sample	values	in	one	sound	to	set	the	sample	values	in	
another	sound.		In	this	reading	we	will	explore	several	sound	manipulations	where	
we	use	modified	ranges	and/or	get	sample	values	from	one	sound	and	put	them	into	
another	sound.	
	
The	first	example	we	will	explore	is	reversing	a	sound.		Recall,	a	sound	is	stored	as	
an	array	of	sample	values.		If	you	think	of	this	as	an	ordered	list	of	values,	then	
reversing	the	sound	would	mean	putting	this	list	in	reverse	order.		To	do	this,	we	
will	create	a	new	sound	with	the	same	size	as	the	original	sound,	and	then	as	we	get	
the	sample	values	from	the	original	sound,	we	will	set	them	at	the	opposite	end	in	
the	new	sound.		If	a	sound	has	n	samples,	then	we	have	the	following	
correspondence	between	sample	indices	in	the	original	sound	and	sample	indices	in	
the	new	sound:	
	

Index	in	original	
sound	

Index	in	new	
sound	

0	 n-1	
1	 n-2		(i.e.,	n-1-1)	
2	 n-3		(i.e.,	n-1-2)	
…	 	
n-1	 0			(i.e.,	n-1-(n-1))	

	
The	code	is	shown	below:	
	
Example:	Reversing	a	sound	
	
function to reverse a sound array
def reverse(soundData):
 # Make an array of all zeros, same length as soundData,
 # with data type np.int16
 new_data = np.zeros(len(soundData), dtype=np.int16)

 numSamples = len(soundData)

loop through soundData, setting the sample values in new_data
 for index in range(numSamples):
 new_data[numSamples -1 - index] = soundData[index]

 return new_data
	
	

The	sound	waves	would	look	something	like	the	following:	
	

	 	
	 	 	

	original	sound	 	 	 	 							reversed	sound	
	
	
	
In	our	introductory	discussion	about	sound,	we	learned	that	pitch	is	related	to	
frequency.		We	can	change	the	pitch	of	a	sound	by	changing	the	frequency.		Sound	
frequency	is	determined	by	the	way	in	which	sound	waves	oscillate	while	travelling	to	
our	ears;	they	alternate	between	compressing	and	stretching	the	medium.		The	
frequency	of	a	sound	wave	is	measured	as	the	total	number	of	waves	produced	in	one	
second.	

In	the	following	figures	of	sound	waves,	we	can	see	that	the	original	sound	is	being	
“stretched”,	or	more	precisely,	the	frequency	has	been	halved.		(In	the	original	length	of	
time	of	the	sound,	we	now	have	only	half	the	sound.)		Each	sample	in	the	original	sound	
is	being	used	twice	in	the	new	sound.		So,	the	length	of	time	for	one	cycle	has	been	
doubled.		When	you	look	at	the	waves	for	the	sounds	in	these	pictures,	you	can	see	that	
the	sounds	have	the	same	shape,	but	the	second	one	looks	stretched.		(Look	at	the	Time	
axis	along	the	bottom	of	the	figure.)	
	

	 	
				 	 original	sound	 	 	 	 sound	with	halved	frequency	
	
	
So	how	do	we	do	this	with	code?		Our	algorithm	is	very	similar	to	what	we	did	to	scale	a	
picture	up	in	size.		To	make	a	picture	larger,	we	used	every	pixel	twice.		We	are	going	to	
do	the	same	thing	with	samples	in	our	sounds	–	we	will	use	each	sample	value	twice	to	
stretch	the	sound	into	a	new	sound	twice	as	long.	
	
Example:	Halving	the	frequency	
	

function to halve the frequency
new sound is twice as long, and sounds lower and deeper
def halfFrequency(soundData):
 # Make an array of all zeros, twice as long as soundData,
 # data type np.int16
 new_data = np.zeros(len(soundData)*2, dtype=np.int16)

 # loop through soundData, setting sample values in new_data
 for index in range(len(new_data)):
 new_data[index] = soundData[index//2]

 return new_data

We	could	just	as	easily	double	the	frequency	of	a	sound.		Again,	we	would	use	ideas	
similar	to	what	we	used	to	make	a	picture	smaller.		To	make	a	picture	smaller,	we	used	
every	other	pixel;	to	double	the	frequency,	we	will	use	every	other	sample	value.		So	our	
original	sound	would	look	like	this	with	a	doubled	frequency:	
	

	 	
	 	 original	sound	 	 	 	 sound	with	doubled	frequency	
	
Again,	notice	the	Time	axis	along	the	bottom	is	different	between	the	two.			
	
	
In	the	next	activity,	you	will	experiment	with	writing	and	testing	functions	to	reverse	a	
sound	and	to	change	the	pitch	of	a	sound	by	halving	and	doubling	the	frequency.	
	
Activity:	Sound	Manipulations	
	

