
Pictures and Loops

In the previous section we saw how to change the red, green, and blue values of one
pixel. In some applications (such as turning an image into a grayscale image) we may
want to change the color of every pixel in the image, or in other applications (such as
removing red eye), we may want to change the color of pixels in a small region of the
image. If we have 640 x 480 = 307,200 pixels, do you want to type in 307,200 individual
statements? Don’t worry, we’re not going to do this! We are going to use a loop
statement to do this. A loop is a way to tell the computer to do the same thing (or almost
the same thing) over and over again. We want to do the same thing, but to a different
pixel each time.

A for loop will execute a block of commands that you specify for each item in a list that
you provide. As part of the loop statement, you will specify a variable that will get the
value of a different item from your list each time the group of commands executes. The
list is an ordered collection of data – it could be numbers, strings, pixels, or many other
different kinds of collections.

A for loop in Python looks like the following:

 for ______________ in ______________:
 # do some cool stuff here
 # do some more cool stuff here

The very first part of this statement is the keyword for. The first blank (after the
keyword for) will be filled in with your choice of a variable name, typically a name that
represents the elements in your list. This variable is followed by the keyword in. The
second blank (after the keyword in) will be filled in with the list for which you want to
repeat the code with. At the end of the line you must have a colon, to indicate that what
comes next is the block of code you want to repeat. (This is a Python rule!) The lines of
code that are to be repeated should all be indented and indented the same amount.

The range function in Python is a commonly used function to get a list of numbers.
When working with images, we will use this function to get the range of possible values
for the coordinates of the pixels we want to modify.

There are three ways to use the range function in Python – with one, two, or three
parameters. Let’s look at examples to show how these different versions of range
work.

Example 1: The range function

The 1-parameter range function returns a list of integers that starts at 0 and goes up to
the value that was input but does not include it. The 2-parameter range function returns
a list of integers that starts at the first number indicated and goes up to, but does not
include, the second number. The 3-parameter range function works similarly to the 2-
parameter range function, except that the third parameter specifies what the step is (i.e.,
what to count by). Notice that in the last example of the 3-parameter range function,
the range starts at 10 and goes down to 0. The step is negative to make the count go
backwards.

(Note: Since the range function gives us a list of values, we put the * in front of it when
printing so that it will print all of the values in the list.)

The following function to calculate the sum of the first n integers uses the range function
to give a list of numbers to be used in a loop:

Example 2: Function to sum first n integers

def sumIntegers(n):
 sum = 0
 for j in range(1, n+1):
 sum = sum + j
 return sum

How does this work? The variable sum will hold the accumulated total as we go through
the loop; it starts out with the value 0. The first time we go through the loop, j takes on
the value 1. It then gets added to the value in sum (currently 0), and then the result gets
stored back in sum. So sum now has the value 1. The next time through the loop, j takes
on the next value in the list, which is 2. This value gets added to what is in sum
(currently 1), and gets stored back in sum. So sum now has the value 3. This continues
until the last iteration of the loop, when x takes on the value of n. This gets added to the
value in sum, and stored back in sum. The variable sum then contains the value of
1+2+3+…+n.

Now how can we use this range function to do anything with pictures?

In a previous activity, we learned how to draw shapes on an image. If we wanted to
repeatedly draw a shape to make a pattern, we can do this with a loop. In the next
example, the function will draw horizontal lines across an image, from top to bottom.

Example 3: Drawing lines

def drawLines(picture):
 # Duplicate the original picture
 newPic = picture.copy()
 d = ImageDraw.Draw(newPic)

 # Draw the lines
 for y in range(0, newPic.height, 10):
 d.line([0, y, newPic.width -1, y], 'blue')

 # Return the new picture
 return newPic

How does this work? We begin by copying our original picture so that we work with a
copy, not the original. Then we create a loop that will let the y- coordinate vary from the
top of the picture to the bottom, jumping by 10. The first line gets drawn at row 0. The
second line get drawn at row 10, the third at row 20, and so on.

Another way we can make use of the range function is to use it to specify a range of
pixel coordinates for which we would like to change the pixel colors. The basic idea is
that we will use it in our loop statements to indicate which coordinates of pixels we
would like to modify. Consider the following example that will change the color of the
first 20 pixels in the 5th row of the picture to black.

Example 4: Change some pixels to black

def makeSomeBlack(picture):
 # Duplicate the original picture
 newPic = picture.copy()

 # Change the pixels
 for x in range(20):
 newPic.putpixel((x, 5), (0, 0, 0))

 # Return the new picture
 return newPic

So how does this work? We begin by copying our original picture so that we work with a
copy, not the original. Then we loop through the first 20 integers (0 through 19). Each
time through the loop, we get one pixel, with coordinates (x, 5) and change the color of
that pixel to black. The first time through the loop, we get and change pixel (0,5). The
second time through the loop, we get and change pixel (1, 5). The next time through the
loop, we get and change pixel (2, 5). We continue this until the last time through the
loop, when we get and change pixel (19, 5).

Suppose we wanted to change the entire row to black. We only need to modify the
parameter in the range function of the example so that it ends at the last pixel in the row
(instead of the 20th pixel in the row). If our picture is 640 x 480, the last pixel in row 5 is
(639, 5). We will use the width attribute to specify what this should be.

Example 5: Change pixels in row 5 to black

def changeRow5(picture):
 # Duplicate the original picture
 newPic = picture.copy()

 # Change the pixels
 for x in range(newPic.width):
 newPic.putpixel((x, 5), (0, 0, 0))

 # Return the new picture
 return newPic

Notice that the only difference between this example and Example 4 is the parameter in
the range function.

Let’s extend this example so that we now change the color of every pixel in the picture to
black. We could write functions similar to changeRow5 such as changeRow0,
changeRow1, changeRow2, etc. This is really too much work! Instead of doing this,
we will actually use a loop inside of a loop (nested loops). If we want to change all of the
pixels in all of the rows and all of the columns, we will use one loop to color each row
like we did with changeRow5, and then we will nest that loop inside of a loop that lets
us go through each of the rows. The code would look like the following:

Example 5: Color all pixels using nested loops

def colorAllBlack(picture):
 # Duplicate the original picture
 newPic = picture.copy()

 for y in range(newPic.height):
 # Change the pixels in row y
 for x in range(newPic.width):
 newPic.putpixel((x,y),(0, 0, 0))

 # Return the new picture
 return newPic
How does this work? For each value of y in the list [0, …, h-1] (where h is the height of
the picture), we go through the entire loop for x. So y starts at 0. Then x starts at 0 and
we modify pixel (0, 0). Then y stays at 0 and x becomes 1. We then modify pixel (1, 0).
We modify all of the pixels (2, 0), (3, 0), …, (w-1, 0) before y changes value. After we
modify pixel (w-1, 0), y becomes 1, and we modify pixel (0, 1). We then modify all the
pixels (1, 1), (2, 1), (3, 1), …(w-1, 1). Then y will become 2 and we will modify pixels
(0, 2), (1, 2), (2, 2), (3, 2), …etc. We continue this until y becomes h-1 and we modify
the pixels in the bottom row of the picture: (0, h-1), (1, h-1), (2, h-1), …, (w-1, h-1). The
value of y tells us which row we are working with, and the values of x let us move right
across the picture.

We should now practice these ideas of using the range function to get coordinates of
pixels to modify by working through the next mini-lab.

Activity: Functions and Loops

