
Manipulating	Colors	
	
In	the	previous	section	we	saw	how	to	change	the	red,	green,	and	blue	values	of	one	
pixel.		We	then	learned	that	we	could	use	a	loop	to	change	the	color	of	all	the	pixels	
in	one	row,	and	we	could	use	nested	loops	to	change	the	color	of	all	of	the	pixels	in	
an	image.		We	are	going	to	explore	that	more	now.	
	
Recall	the	following	function	from	the	previous	reading	that	turns	all	pixels	black:		
	
Example	1:	Color	all	pixels	using	nested	loops	
	
def colorAllBlack(picture):
 # Duplicate the original picture
 newPic = picture.copy()

 for y in range(newPic.height):
 # Change the pixels in row y
 for x in range(newPic.width):
 newPic.putpixel((x,y),(0, 0, 0))

 # Return the new picture
 return newPic
	 	
Turning	all	of	the	pixels	black	may	seem	a	little	drastic;	changing	the	ranges	used	in	
the	loops	could	allow	us	to	color	only	a	segment	of	the	image	black,	such	as	what	
might	be	used	to	cover	a	license	plate,	or	a	house	address,	or	someone’s	face	when	
we	should	not	be	making	that	information	public.	
	
The	following	function	changes	just	a	portion	of	the	picture	to	black,	to	cover	the	
address	at	the	top	of	the	house.		The	house	image	was	first	shown	as	a	plotted	figure,	
so	that	we	could	determine	the	coordinates	of	the	area	to	black	out.	
The	coordinate	of	the	top	left	corner	of	a	rectangle	looks	to	be	(350,	120),	and	the	
bottom	right	corner	looks	to	be	(475,	200).	
	

	

	
Example	2:	Color	only	a	selection	of	pixels	using	nested	loops	
	
def colorSomeBlack(picture):
 # Duplicate the original picture
 newPic = picture.copy()

 for y in range(startY, endY):
 # Change the pixels in row y
 for x in range(startX, endX):
 newPic.putpixel((x,y),(0, 0, 0))

 # Return the new picture
 return newPic
	
Below	are	the	results	of	running	this	function	on	the	house	picture,	with	the	
coordinates	(startX, startY)	=	(350,	120),	and	(endX, endY)	=	(475,	200).		
The	original	picture	is	on	the	left,	the	modified	picture	is	on	the	right.	
	

	
	
Instead	of	changing	the	values	of	red,	green,	and	blue	to	0	for	each	pixel,	we	may	like	
to	change	only	red,	or	only	green,	or	only	blue.		Or	we	may	like	to	change	each	of	red,	
green,	and	blue,	but	by	different	amounts.	
	
The	following	examples	show	how	different	effects	may	be	achieved.		You	should	
look	at	how	these	functions	work	–	how	are	they	getting	pixels	and	changing	the	
color	values?		Then	try	these	in	your	own	program.	
	
The	following	example	is	a	function	to	cut	the	red	value	of	a	picture	by	a	quarter.	
	
	 	

Example	3:	Reducing	red	by	25%	
	
Function to reduce red values by 25%
def reduceRed(picture):
 newPic = picture.copy()
 for x in range(newPic.width):
 for y in range(newPic.height):
 rvalue, gvalue, bvalue = newPic.getpixel((x, y))
 newR = int(rvalue * 0.75)
 newPic.putpixel((x, y),(newR, gvalue, bvalue))

 return newPic

Notice	that	the	loop	structure	in	the	middle	of	this	function	looks	exactly	like	the	
loop	we	used	in	the	previous	example.		The	code	inside	the	loop	is	slightly	different	-	
here	we	get	the	current	amount	of	red	in	a	pixel	and	then	change	it.		By	multiplying	
the	red	value	by	a	factor	less	than	1	we	are	making	the	red	value	smaller.		Reducing	
the	color	by	25%	means	we	have	75%	of	the	color	remaining.		That’s	why	we	
multiply	the	current	red	value	by	0.75.		The	values	for	red,	green,	and	blue	must	be	
integers,	so	we	cast	the	new	red	value	by	passing	the	result	of	the	calculation	to	the	
int	function.		This	will	convert	a	decimal	value	into	an	integer	by	ignoring	anything	
after	the	decimal	point.	
	
As	in	the	example	where	we	changed	all	the	pixels	to	black,	we	see	in	this	example	
that	a	picture	gets	passed	in	as	a	parameter,	and	then	the	first	thing	we	do	is	
duplicate	it.		We	do	this	so	that	we	don’t	modify	the	original	picture.		We	create	a	
new	picture	identical	to	the	original,	and	then	make	our	changes	to	the	new	picture.		
At	the	end	of	the	function,	we	return	the	new	picture	so	that	we	can	use	or	save	our	
results.	
	
In	a	Code	cell,	we	would	call	this	function	with	code	something	like	the	following:	
	
myImage = Image.open('/drive/MyDrive/ColabNotebooks/arch.jpg')
newImage = reduceRed(myImage)
newImage.show()
	
How	could	we	modify	this	function	so	that	we	make	the	red	values	larger?		The	only	
change	we	need	to	make	is	to	change	the	multiplication	factor	to	be	a	value	larger	
than	1	instead	of	smaller	than	1.	
	
	 	

Example	4:	Increase	the	amount	of	red	in	a	picture	
	
Function to increase red values by 20%
def increaseRed(picture):
 newPic = picture.copy()
 for x in range(newPic.width):
 for y in range(newPic.height):
 rvalue, gvalue, bvalue = newPic.getpixel((x,y))
 newR = int(rvalue * 1.2)
 newPic.putpixel((x,y),(newR, gvalue, bvalue))

 return newPic
	
	
What	happens	if	you	increase	the	red	in	a	picture	that	has	a	lot	of	red?		When	you	
multiply	the	red	values	by	something	larger	than	1,	there	is	a	chance	that	the	
resulting	value	will	be	greater	than	255.		So	what	should	we	do?		One	possibility	is	
that	the	program	could	crash.		Another	option	would	be	to	clip	(i.e.,	cap)	the	value	of	
red	at	255,	and	still	another	option	would	be	to	wrap	it	around	using	the	modulo	
(remainder)	operator.		Wrapping	around	may	give	you	unexpected	(but	possibly	
interesting)	results.		For	example,	if	the	red	value	was	150	and	you	tried	to	double	
the	red,	the	new	value	would	be	300.		We	can’t	have	a	red	value	of	300,	so	we	would	
either	set	it	to	255,	or	let	it	wrap	around	to	44	(300	–	256).		The	putpixel	function	
of	an	Image	object	in	the	PIL	library	is	designed	to	cap	the	values	at	255.		If	you	
attempt	to	set	the	color	of	a	pixel	with	values	greater	than	255,	the	value	255	will	be	
used.	
	
So	far,	we	have	only	done	one	color	manipulation	in	the	loop.		There	is	nothing	
preventing	us	from	doing	more	than	one	color	manipulation	at	time.		Suppose	we	
want	to	add	a	sunset	effect	to	our	picture.		When	you	view	a	sunset,	the	sky	seems	to	
redden,	while	everything	gets	darker.		One	way	to	do	this	could	be	to	reduce	the	
amount	of	green	and	blue	in	the	picture.		By	doing	this,	the	red	will	stand	out	more,	
and	the	other	colors	will	get	darker.	
	

Example	5:	Sunset	Effect	
	
make sunset
def sunset(picture):
 # duplicate the original picture
 newPic = picture.copy()

 # reduce the green and blue of all pixels
 for y in range(newPic.height):
 for x in range(newPic.width):
 rvalue, gvalue, bvalue = newPic.getpixel((x,y))
 newg = int(gvalue * 0.7)
 newb = int(bvalue * 0.7)
 newPic.putpixel((x,y),(rvalue, newg, newb))

 # return the new picture
 return newPic
	
 	
Notice,	again,	in	this	example,	we	are	using	the	same	loop	structure	to	iterate	
through	and	change	each	of	the	pixels	in	the	pictures.		The	big	difference	here	is	that	
we	are	getting	and	changing	both	the	green	and	the	blue	values	inside	the	loop,	
while	keeping	the	red	the	same.	
	
Creating	Negatives	
	
To	create	the	negative	of	an	image,	we	want	the	opposite	of	each	the	current	values	
of	red,	green,	and	blue.		So	what	does	this	mean?		If	we	have	no	red	(i.e.,	the	red	
value	is	0),	we	need	all	red	(i.e.,	a	red	value	of	255).		If	there	is	a	lot	of	red,	we	need	a	
little	bit	of	red,	and	vice	versa.		So,	say	the	red	value	of	a	pixel	in	a	picture	is	60.		The	
red	value	in	the	corresponding	pixel	in	the	negative	image	would	be	255	–	60	=	195.		
So,	to	create	a	picture	that	is	the	negative,	we	compute	the	negative	value	(255	–	
original	value)	of	each	of	the	red,	green,	and	blue	components	for	each	pixel	in	the	
original	picture.		We	then	set	the	colors	of	the	pixels	in	the	new	picture	to	these	new	
colors.		Our	function	would	look	like:	
	
	 	

Example	6:	Creating	a	negative	image	
	
make a sunset effect
def negative(picture):
 # duplicate the original picture
 newPic = picture.copy()

 # reduce the green and blue of all pixels
 for y in range(newPic.height):
 for x in range(newPic.width):
 rvalue, gvalue, bvalue = newPic.getpixel((x,y))
 newPic.putpixel((x,y),(255-rvalue, 255-gvalue, 255-bvalue))

 # return the new picture
 return newPic
	
 return newPict
	
Calling	the	sunset	effect	and	then	the	negative	effect	on	an	image	and	then	
displaying	the	results	would	look	something	like	the	following:	
	

	
	 	

Creating	Grayscale	Images	
	
Creating	grayscale	images	is	also	not	too	difficult.		When	the	red	component,	green	
component,	and	blue	component	all	have	the	same	value,	the	resultant	color	is	gray.		
This	means	that	we	will	have	256	different	shades	of	gray,	ranging	from	black	at	(0,	
0,	0),	to	white	at	(255,	255,	255).		The	only	tricky	part	is	figuring	out	what	the	
replicated	value	should	be.		We	want	a	sense	of	the	intensity	of	the	color,	or	the	
luminance.		One	way	to	compute	this	is	to	compute	the	average	of	the	red,	green,	
and	blue	component	colors.		Our	function	would	look	like	the	following:	
	
Example	6:	Creating	a	grayscale	image	
	
make grayscale effect
def grayscale(picture):
 # duplicate the original picture
 newPic = picture.copy()

 # reduce the green and blue of all pixels
 for y in range(newPic.height):
 for x in range(newPic.width):
 rvalue, gvalue, bvalue = newPic.getpixel((x,y))
 intensity = (rvalue + gvalue + bvalue)//3
 newPic.putpixel((x,y),(intensity, intensity, intensity))

 # return the new picture
 return newPic
	
As	it	turns	out,	this	method	really	oversimplifies	the	notion	of	grayscale.		We	can	
actually	take	into	account	how	the	human	eye	perceives	luminance	–	we	consider	
blue	to	be	darker	than	red,	even	if	there	is	the	same	amount	of	light	reflected	off.		So	
we	will	weight	blue	lower,	red	and	green	higher	when	we	compute	the	average.		Our	
modified	function	would	look	like:	
	
	
	 	

Example	7:	Grayscale	with	weights	
	
make weighted grayscale effect
def weightedgrayscale(picture):
 # duplicate the original picture
 newPic = picture.copy()

 # reduce the green and blue of all pixels
 for y in range(newPic.height):
 for x in range(newPic.width):
 rvalue, gvalue, bvalue = newPic.getpixel((x,y))
 newr = rvalue * 0.299
 newg = gvalue * 0.587
 newb = bvalue * 0.114
 luminance = int(newr + newg + newb)
 newPic.putpixel((x,y),(luminance, luminance, luminance))

 # return the new picture
 return newPic

The	results	of	calling	these	functions	are	below	(grayscale	is	in	the	middle,	weighted	
grayscale	is	on	the	right):	
	

	
	
You	may,	of	course,	experiment	with	the	weights	to	obtain	different	results.	

We	will	now	test	some	of	these	functions	and	write	some	of	our	own	functions	to	
manipulate	pixel	colors	in	the	next	activity.	
	
Activity:	Manipulating	Colors	

