Complexity of Sorting

COMP 215 Lecture 12
The rest of this course will be concerned with complexity:
- Evaluating the difficulty of problems apart from any particular algorithm.

At least two ways to go about this:
- Analyze the problem itself to find a lower bound on the complexity of finding a solution.
 - We will do this for sorting (this week and next) and searching (8th week).
 - Goal is to find the tightest (highest) lower bound possible.
- If we can't get a good lower bound, reduce the problem to another problem that is “well understood”. (weeks 9 and 10.)
Review of Simple Sorts

• Insertion Sort:

```c
void insertion_sort (int n, keytype S[]){
    keytype x;
    for (int i = 2; i<=n; i++) {
        x = S[i];
        j = i - 1;
        while (j > 0 && S[j] > x) {
            S[j+1] = S[j];
            j--;
        }
        S[j+1] = x;
    }
}
```
Review of Simple Sorts

- Selection Sort

```c
void selection_sort (int n, keytype S[])
{
    index smallest;
    for (int i = 1; i <= n-1; i++) {
        smallest = i;
        for (int j = i+1; j <= n; j++) {
            if (S[j] < S[smallest])
                smallest = j;
        }
        swap S[i] and S[smallest];
    }
}
```
Review of Simple Sorts

- Exchange Sort

```c
void selection_sort (int n, keytype S[]){
    index smallest;
    for (int i = 1; i <= n-1; i++) {
        smallest = i;
        for (int j = i+1; j <= n; j++) {
            if (S[j] < S[smallest])
                swap S[i] and S[smallest];
        }
    }
}
```
Analysis

- Easy to see that all three are in place and worst case order n^2.
- Our book also gives some exact bounds and average case analyses.
Analyzing the Sorting Problem

- **Inversions** are central to analyzing the sorting problem.
- An inversion is a pair of keys that is out of order.
 - In the list [1, 3, 4, 2] there are exactly two inversions, (3, 2) and (4, 2).
 - There are no inversions in a sorted list.
- We are most interested in analyzing sorting when all keys are distinct – this leads to the worst worst cases.
- If we assume all keys are distinct, then we can, without loss of generality, assume that all keys are in the range 1..\(n\).
- Note: we are confining ourself to sorts that sort only by comparison of keys.
How Many Inversions?

- What is the maximum number of inversions possible in an list of n items?
- When does it happen?
How Many Inversions?

• What is the maximum number of inversions possible in a list of n items?

\[(n-1) + (n-2) + \ldots + 1 = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}\]

• What is the average number of inversions?
Average # of Inversions

- Notice that every permutation of keys can be paired with its **transpose**.
 - E.g. [1, 3, 4, 2] and [2, 4, 3, 1].
 - A given pair of keys is an inversion in *either* the original permutation or the transpose, not both.
 - E.g. in the original (4,2) is an inversion, in the transpose (2,4) is not.
 - So each permutation-transpose pair has exactly \(\frac{n(n-1)}{2} \) inversions. (Why?)
 - Between them, they average \(\frac{n(n-1)}{4} \) inversions.
 - Since every permutation is equally likely we can conclude that this is the average number of inversions overall.
A Lower Bound for Some Sorts

• We can immediately determine a lower bound for sorts that remove at most one inversion per comparison.

\[W(n) = \frac{n(n-1)}{2} \]

\[A(n) = \frac{n(n-1)}{4} \]

• It is easy to see that insertion sort is in this category.
• Less easy to see that selection and exchange sort are as well.