Sum of Subsets and Graph Coloring

COMP 215 Lecture 10
Sum-of-Subsets

- Similar to the knapsack problem, except we don't worry about cost, and we want to find all subsets with total weights that equal the weight limit.
- Before we get started... How many subsets are there of a set containing N items?
- Let's design a brute force solution...
Backtracking for Sum-of-Subsets

• First sort the items so that weight is non-decreasing.

• Two conditions that allow backtracking:
 1) At level i, if the total weight is not W, and adding w_{i+1} would bring the total weight above W.
 • (because all weights after w_{i+1} are $\geq w_{i+1}$)

 2) At level i, if the total weight is not W, and all following weights can't bring it to W.
//i = index of current item.
//weight = summed weight of items included so far.
//total = total weight of not-yet-considered items.

void sum_of_subsets (index i, int weight, int total){
 if (promising(i, weight, total)) {
 if (weight == W) {
 cout << include[1] through include[i];
 } else {
 include[i+1] = true;
 sum_of_subsets(i+1, weight + w[i+1], total - w[i+1]);
 include[i+1] = false;
 sum_of_subsets(i+1, weight, total - w[i+1]);
 }
 }
}
Sum-of-Subset Pseudocode

```java
void bool promising (index i, int weight, int total){
    return ((weight + total >= W) &&
        (weight == W || weight + w[i+1] <= W));
}
```

- Before this code is called we need to do some prep work.
 - Sort the items by weight.
 - Compute the total weight of all items.
- What is the maximum size of the search tree?
- Can we guarantee that the portion searched with backtracking will be much smaller?
Analysis

• What is the maximum size of the search tree?
 \[1 + 2 + 2^2 + \ldots + 2^n = 2^{n+1} - 1 \]

• Can we guarantee that the nodes visited with backtracking will be much smaller?
 \[\text{No. Consider a set of items with weights such that} \]
 \[\sum_{i=1}^{n-1} w_i < W \quad w_n = W. \]

• Whether or not a solution can be found efficiently depends both on \(n \) and the specific weights.
Map Coloring

• Color a map such that no two countries that share a border have the same color.
 – Easy if we have as many colors as countries.

• We may want to know the minimum number of colors required for a given map.

• Or, for a given map we may want to know if it is 2-colorable, 3-colorable, or \(m \)-colorable.

• The problem is easier to work with if we think in terms of graphs...
 – Maps lead to planar graphs.

• There are many applications...
The m-Coloring Problem

- Find all ways to color an undirected graph using at most m colors.
- Let's think through the brute force algorithm...
- How can this be improved with backtracking?
//i = index of current vertex.

void m_coloring (index i){
 if (promising(i)) {
 if (i == n) {
 cout << vcolor[1] through vcolor[n];
 } else {
 for (int color = 1; color <= m; color++) {
 vcolor[i+1] = color;
 m_coloring(i+1);
 }
 }
 }
}

m-Coloring With Backtracking

```c
void bool promising (index i){
    for (int j = 1; j < i; j++) {
        if (W[i][j] && vcolor[i] == vcolor[j])
            return false;
    }
    return true;
}
```

- Size of the complete search space:

 \[1 + m + m^2 + \ldots + m^n = \frac{m^{n+1} - 1}{m - 1} \]

- Backtracking might not save us much.
0-1 Knapsack

• We construct the search tree as we did for the sum of subsets problem.

• Two things to notice:
 – This is an optimization problem, so in some sense, we need to search the whole tree.
 – Every node represents a possible solution.

• Any ideas for backtracking?
0-1 Knapsack

- Again we have two possibilities for backtracking:
 1) We do not need to explore a node's children if we have hit the weight limit.
 2) We do not need to explore a node's children if there is no possibility that the profit will exceed the best profit found so far.

- In order to determine two we first sort items by price/weight.

- We then use the greedy (fractional) approach at each node to compute an upper bound on profit.

- Once again, we can find a worst case scenario that requires us to explore almost all of the tree.