Hashing

COMP 215 Lecture 18
Hashing

• Quick reminder for hashing...
 – $\lg n$ work for binary search.
 – $O(1)$ work to retrieve an element from an array, if we know the index.
 – Why not just use keys as indices?
 • Two keys: .032 and 1,000,00.234.

• The idea behind hashing-
 – Remap keys so that they are uniformly distributed in the range 1..n where n is the number of keys.
 – Use the remapped (hashed) keys to index an array.
Hashing

• A simple hashing scheme:
 - \(h(key) = key \% n \)
 - If we have 100 keys that are decimal numbers, this hash function just returns the last two digits.
 - Works fine if there is the last two digits are drawn from a uniform distribution.
 - Not always a good assumption.

• Getting hashing to work requires:
 - A good hashing function.
 - A method for handling collisions. (open and closed hashing)
Hashing Analysis

• If we have a hash function that distributes our n keys uniformly in m buckets.
 – Expected number of keys/bucket is?
 – Expected time for a failed search?
 – Expected time for a successful search?

• Worst case:
 – Number of keys in a bucket?
 – Failed search?
 – Successful search is?
Hashing Analysis

• If we have a hash function that distributes our n keys uniformly in m buckets.
 - Expected number of keys/bucket is n/m.
 - Expected time for a failed search n/m.
 - Expected time for a successful search $(n/m +1)/2$.

• Worst case:
 - Number of keys in a bucket?
 - failed search is n.
 - successful search is n.
Hashing and Binary Search

- Worst case for hashing is much worse than worst case for binary search.
- Average case for hashing is (arguably) not that much better.
- Why not just use binary search?
- The probability of the worst case situation occurring for hashing is
 \[n \times \left(\frac{1}{n} \right)^n \]
- If \(n = 100 \), this is \(10^{-198} \).
Hashing and Binary Search

• What is the probability that hashing will be less efficient than binary search?

• The probability that any given set of \(k \) keys will end up in a given bucket is: \(\left(\frac{1}{m} \right)^k \)

• Probability that any particular bucket will contain at least \(k \) keys is: \(\binom{n}{k} \left(\frac{1}{m} \right)^k \)

• Probability that some bucket will contain \(k \) keys is:

\[
m \times \binom{n}{k} \left(\frac{1}{m} \right)^k = \binom{n}{k} \left(\frac{1}{m} \right)^{k-1}
\]
Hashing and Binary Search

- We can then plug in $\lg n$ for k to compute the probability that hashing will make as many comparisons as binary search for a given input size.
 - $n = 128, \ p = .021$
 - $n = 65,536, \ p = 3.1 \times 10^{-9}$

- All of this assumes that keys are uniformly distributed.
- The real danger is that the hash function will not uniformly distribute the keys.