Backtracking

COMP 215
Search Trees

• The next set of problems we will be looking at require search.

• A sequence of choices must be made – the sequence must satisfy some criterion, or maximize some utility function.

• Search is visualized as a search tree.

• Brute force approaches (depth first search, breadth first search) explore the entire tree.

• Let's look at N-Queens...
N-Queens

- The problem: position N queens on an $N \times N$ chess board, so that no two queens threaten each other.
- Observation: each row must contain exactly one queen.
- The brute force algorithm...
N-Queens Brute Force

```c++
//i = current row
//n = number of queens
//col[i]=position of queen in row i.

void queens (index i, int n, index[] col){
    if (i == n && noThreats()) {
        cout << col[1] through col[n]; //print solution
    } else {
        for (j = 1; j < n; j++) {
            col[i+1] = j;
            queens(i+1, n, col);
        }
    }
}
```

- Analysis: How many nodes in this search tree?
Backtracking

- Don't expand the search tree at a node if that node can't lead to a solution.
- Generic backtracking pseudocode:

```java
void checknode (node v){
    if (promising(v)) {
        if (solution at v) {
            print solution;
        } else {
            for(each child u of v) {
                checknode(u);
            }
        }
    }
}
```
N-Queens W/Backtracking

void queensBT (index i, int n, index[] col){
 if (noThreatsBT(col, i)) {
 if (i == n) {
 cout << col[1] through col[n];
 }
 } else {
 for (j = 1; j < n; j++) {
 col[i+1] = j;
 queensBT(i+1, n, col);
 }
 }
}
Checking for Threats

```java
boolean noThreatsBT (index[] col, index i){
    boolean threat = false;
    for (int j = 1; j < i; j++) {
        if (col[i] == col[j])
            threat = true;
        if (abs(col[i] – col[j]) == i – j)
            threat = true;
    }
}
```
Analysis

- How much more efficient is the backtracking algorithm?
- Hard to say.
- Bound on nodes in search tree is: \(1+n+n^2+\ldots+n^n = \frac{n^{n+1}-1}{n-1}\)
- If we take into account the fact that each column can have at most one queen, we can reduce that to:
 \(- 1 + (1 \times n) + (1 \times n \times (n-1)) + (1 \times n \times (n-1) \times (n-2)) + \ldots + n!\)
- The book suggests a Monte-Carlo approach to analyzing backtracking algorithms.