Convex Hull

COMP 215 Lecture 5
Computational Geometry

• The area of CS concerned with solving geometric problems.

• Examples:
 − Finding intersections between line segments.
 − Finding closest pairs of points.
 − Finding the convex hull. (More on this in a second.)

• Uses in:
 − Graphics.
 − Robotics.
 − VLSI design.
 − etc.
The convex hull of a set Q of points is the smallest convex polygon P for which each point Q is either on the boundary of P or in its interior. (Introduction to Algorithms, Cormen et. al. 2001)

The problem: For an arbitrary set of points Q, find the corresponding P.
Line Segments Properties

- First question:
 - Given two directed line segments: \(\overrightarrow{p_0 p_1} \) and \(\overrightarrow{p_0 p_2} \), is \(\overrightarrow{p_0 p_1} \) clockwise from \(\overrightarrow{p_0 p_2} \)?
Cross Product

- 2d cross product: \(p_1 \times p_2 = x_1 y_2 - x_2 y_1 \)

- When this is positive \(p_1 \) is clockwise from \(p_2 \).
- When this is negative \(p_2 \) is clockwise from \(p_1 \).
Solution to Clockwise Problem

• The original question:
 – Given two directed line segments: $\overrightarrow{p_0p_1}$ and $\overrightarrow{p_0p_2}$, is $\overrightarrow{p_0p_1}$ clockwise from $\overrightarrow{p_0p_2}$?

• The solution: move p_1 and p_2 to use p_0 as the origin, and calculate cross product:

$$ (p_1 - p_0) \times (p_2 - p_0) = (x_1 - x_0)(y_2 - y_0) - (x_2 - x_0)(y_1 - y_0) $$

• If this is positive then $\overrightarrow{p_0p_1}$ is clockwise from $\overrightarrow{p_0p_2}$.
Clockwise Turns

• Next question: do two consecutive line segments $\overrightarrow{p_0p_1}$ and $\overrightarrow{p_1p_2}$ make a clockwise, or counterclockwise turn at p_1?

• This is almost the same as the previous question:

\[
(p_2 - p_0) \times (p_1 - p_0) = (x_2 - x_0)(y_1 - y_0) - (x_1 - x_0)(y_2 - y_0)
\]

• Positive is a clockwise turn, negative is counterclockwise.
Back To Convex Hull

• Any ideas for a good algorithm?
Candidate Algorithm

• First, sort all points by their x coordinate.
 - (Theta(n lg n) time)

• Then divide and conquer:
 - Find the convex hull of the left half of points.
 - Find the convex hull of the right half of points.
 - Merge the two hulls into one. (this is the tricky step.)
Convex Hull Pseudocode

//input: the number of points n, and
//an array of points S, sorted by x coord.
//output: the convex hull of the points in S.

point[] findHullDC(int n, point S[]) {
 if (n > 1) {
 int h = floor(n/2);
 m = n-h;
 point LH[], RH[]; //left and right hulls
 LH = findHullDC(h, S[1..h]);
 RH = findHullDC(m, S[h+1..n]);
 return mergeHulls(LH.size(), RH.size(),
 LH, RH);
 } else {
 return S;
 }
}
Merging Hulls

• Big picture:
 - first find the lines that are upper tangent, and lower tangent to the two hulls (the two red lines)

 - Then remove the points that are cut off.
Finding Tangent Lines

- Start with the rightmost point of the left hull, and the leftmost point of the right hull:
 - While the line is not upper tangent to both left and right:
 - While the line is not upper tangent to the left, move to the next point (counter-clockwise).
 - While the line is not upper tangent to the right, move to the next point (clockwise).
Checking Tangentness

- How can we tell if a line is upper tangent to the left hull?
- The pair of line segments $\overline{p_r p_l}$, and $\overline{p_l p_{l-ccw}}$ should make a CCW turn at p_l.
- The same goes for $\overline{p_r p_l}$ and $\overline{p_l p_{l-cw}}$.
The Tricky Bits

- Hulls need to be maintained in order (CW or CCW).
- Needs to be stored in a data structure that allows wrapped forward and backward iteration.
 - Circularly linked list.
 - Array with clever indexing.
- Several ways to handle base cases:
 - Special code to create hulls of size 1, 2, and 3?
 - Clever merging that can merge a hull of size 2 with a hull of size 1? (or 1 and 1, or 3 and 2, etc.)
Analysis & PP

- Let's talk about running time.
- Then let's talk about the programming project.