Recurrences

COMP 215
Analysis of Iterative Algorithms

//return the location of the item matching x, or 0 if //no such item is found.

index SequentialSearch(keytype[] S, int n, keytype x) {
 index location = 1;
 while (location <= n && S[location] != x)
 location++
 if (location > n)
 location = 0;
 return location;
}

• It is straightforward to figure out the complexity here.
• Count the number of times the basic operation occurs, accounting for loops.
Analysis of Recursive Algorithms

```
//factorial function
int fact(int n) {
    if (n == 0)
        return 1;
    else
        return n * fact(n-1);
}
```

- The situation here is trickier.
- How many times does the basic operation (multiplication) occur?
Analysis of Recursive Algorithms

- The situation here is trickier.
- How many times does the basic operation (multiplication) occur?
- Easily described in terms of a recurrence: \(t_n = t_{n-1} + 1 \)
- Closed form?

```c
//factorial function
int fact(int n) {
    if (n == 0)
        return 1;
    else
        return n * fact(n-1);
}
```
Inductive Proof...

- \(t_0 = 0 \)
- \(t_n = t_{n-1} + 1 \)
- Candidate solution: \(t_n = n \)
Exercise

- Assuming multiplication is the basic operation, develop a recurrence.

```c
int newfun(int n) {
    a = 0;
    if (n == 0)
        return 1;
    else
        a += newfun(n-1);
        a += newfun(n-1);
        for (i = 1; i <= n; i++)
            a = a * n;
    return a;
}
```
Binary Search

//return the location of the item matching x, or 0 if //no such item is found. S must be sorted.

index BinarySearch(keytype[] S, int low, int high, keytype x) {
 index mid;

 if (low > high)
 return 0;
 else {
 mid = floor((low + high) / 2)
 if (x == S[mid])
 return mid;
 else if (x < S[mid])
 return BinarySearch(low, mid - 1);
 else
 return BinarySearch(mid + 1, high);
 }
}
Another Inductive Proof

• The recurrence is:

\[t_n = t_{\lfloor n/2 \rfloor} + 1 \]

\[t_1 = 1 \]

• For the same of simplicity, assume that \(n \) is a power of 2.

\[t_n = t_{n/2} + 1 \]

\[t_1 = 1 \]

• Candidate solution?
Handling Non-Powers of Two (or b)

- For binary search we were able to exactly determine the complexity, as long as n was a power of 2: $\lg n + 1$.
- It would be nice to be able to say *something* about binary search even if n is not a power of 2.
- E.g. $T(n) \in \Theta(\lg n)$ for all n.
- First some definitions...
Definitions

• A complexity function $f(n)$ is **strictly increasing** if $f(n)$ always gets larger as n gets larger.

 – That is, if $n_1 > n_2$, then $f(n_1) > f(n_2)$.

• A complexity function $f(n)$ is **non-decreasing** if $f(n)$ never gets smaller as n gets larger.

 – That is, if $n_1 > n_2$, then $f(n_1) \geq f(n_2)$.

• Reminder: A complexity function can be any function that maps positive integers to non-negative reals.
More Definitions

- A complexity function $f(n)$ is **eventually non-decreasing** if for all n past some point the function never gets smaller as n gets larger.
 - That is, there exists an N such that if $n_1 > n_2 > N$ then $f(n_1) \geq f(n_2)$.

- A complexity function $f(n)$ is **smooth** if $f(n)$ is eventually non-decreasing and if $f(2n) \in \Theta(f(n))$.

- (Note that this is not the same as the calculus definition of smoothness)
Finally, The Theorem

- let $b \geq 2$ be an integer, let $f(n)$ be a smooth complexity function, and let $T(n)$ be an eventually non-decreasing complexity function. If

$$T(n) \in \Theta(f(n)) \quad \text{for } n \text{ a power of } b,$$

then

$$T(n) \in \Theta(f(n))$$

- The same implication holds if Θ is replaced by “big O”, Ω, or “small o”.
Binary Search is in $\Theta(lg n)$

- We already know that $W(n)=lg n +1$, if n is a power of 2.
- We need to show that
 - $lg n$ is smooth and that,
 - pretty easy.
 - $t_n = t_{\lfloor n/2 \rfloor} + 1$ is eventually non-decreasing.
 - requires induction.
What if You Don't Have a Guess?

- Backward substitution...
- Recursion trees – particularly for divide and conquer algorithms.
- Recursion tree for $t_n = 2t_{\frac{n}{2}} + n$...
- “Cookbook” solutions.
General Solution for Divide and Conquer

Suppose a complexity function $T(n)$ is eventually non-decreasing and satisfies

$$T(n) = aT\left(\frac{n}{b}\right) + f(n) \quad \text{for } n > 1, \ n \text{ a power of } b$$

$T(1) = d$

If $f(n) \in \Theta(n^k)$ Where $b \geq 2$ and $k \geq 0$ are constant integers and a, c, and d are constants such that $a > 0$, $c > 0$ and $d \geq 0$. Then

$$T(n) \in \begin{cases}
\Theta(n^k) & \text{if } a < b^k \\
\Theta(n^k \lg n) & \text{if } a = b^k \\
\Theta(n^{\log_b a}) & \text{if } a > b^k
\end{cases}$$

(This is slightly more general than the version in the book. Proof in Cormen et al. Intro to Algorithms 2nd edition.)
Applying The Theorem

- Let's take another look at \(t_n = 2t_{n/2} + n \).

- If we replace

 \[
 T(n) = aT\left(\frac{n}{b}\right) + f(n)
 \]

- With

 \[
 T(n) \leq aT\left(\frac{n}{b}\right) + f(n) \quad \text{or} \quad T(n) \geq aT\left(\frac{n}{b}\right) + f(n)
 \]

- Then the same result holds, replacing \(\Theta \) with “big O” or \(\Omega \) respectively.
Homogeneous Linear Recurrences

- Another cookbook approach.

- **Homogeneous Linear Recurrences** have the form:

 \[
 a_0 t_n + a_1 t_{n-1} + \cdots + a_k t_{n-k} = 0
 \]

- Where each \(a_i \) is a constant.

- For example:

 - \(7t_n - 3t_{n-1} = 0 \)
 - \(6t_n - 5t_{n-1} + 8t_{n-2} = 0 \)

- Recall the Fibonacci sequence: \(t_n = t_{n-1} + t_{n-2} \), or

 \[
 t_n - t_{n-1} - t_{n-2} = 0
 \]
Example Solution

• Consider this recurrence:
 \[t_n - 5t_{n-1} + 6t_{n-2} = 0 \]
 \[t_0 = 0 \]
 \[t_1 = 1 \]

• Substitute \(t_n = r^n \):
 \[r^n - 5r^{n-1} + 6r^{n-2} = 0 \]

• A little algebra:
 \[r^{n-2}(r^2 - 5r + 6) = 0 \]

• Factor:
 \[r^{n-2}(r - 2)(r - 3) = 0 \]
Example Solution Continued

- So, we have roots at \(r = 0, \, r = 2 \) and \(r = 3 \).
- This means that \(t_n = 0, \, t_n = 2^n, \, t_n = 3^n \) are all solutions to the recurrence.
- It turns out that the general solution can be specified as:
 \[
 t_n = c_1 2^n + c_2 3^n
 \]
- Where \(c_1 \) and \(c_2 \) are arbitrary constants.
- We fix the constants by plugging in the initial conditions
Let the homogeneous linear recurrence equation
\[a_0 t_n + a_1 t_{n-1} + \cdots + a_k t_{n-k} = 0 \]
be given. If its characteristic equation
\[a_0 r^k + a_1 r^{k-1} + \cdots + a_k r^0 = 0 \]
has \(k \) distinct solutions \(r_1, r_2, \ldots, r_k \), then the only solutions
to the recurrence are:
\[t_n = c_1 r_1^n + c_2 r_2^n + \cdots + c_k r_k^n \]
The values of the constants are determined by the initial conditions
Example (From Book)

\[t_n - 3t_{n-1} - 4t_{n-2} = 0 \]

\[t_0 = 0 \]

\[t_1 = 1 \]
What if there are Repeated Roots?

- Theorem B.2 in the book gives the technique for handling repeated roots:

- Let r be a root of multiplicity m of the characteristic equation for a homogeneous linear recurrence with constant coefficients. Then

\[
t_n = r^n, \quad t_n = nr^n, \quad t_n = n^2 r^n, \quad \cdots \quad , t_n = n^{m-1} r^n
\]

- are all solutions to the recurrence. Therefore a term for each is included in the general solution.

- E.g. if the characteristic equation had the solution:

\[
(r - 1)(r - 3)^3
\]

- The solution to the recurrence would be:

\[
t_n = c_1 1^n + c_2 3^n + c_3 n 3^n + c_4 n^2 3^n
\]
Non-Homogeneous Linear Recurrences

\[a_0 t_n + a_1 t_{n-1} + \cdots + a_k t_{n-k} = f(n) \]

- There is no general method that works for any \(f(n) \).
- We will show a cookbook method for \(f(n) = b^n p(n) \).
- \(b \) is a constant and \(p(n) \) is any polynomial in \(n \).
- Examples
 - \(t_n + 5t_{n-1} - 6t_{n-2} = 4^n \), here \(b = 4, p(n) = 1 \)
 - \(6t_n - 5t_{n-1} + 8t_{n-2} = 2^n(3n^2 + n + 1) \), \(b = 2, p(n) = 3n^2 + n + 1 \)
General Solution

- A non-homogeneous linear recurrence of the form
 \[a_0 t_n + a_1 t_{n-1} + \cdots + a_k t_{n-k} = b^n p(n) \]
- can be transformed into a homogeneous linear recurrence that has the characteristic equation
 \[(a_0 r^k + a_1 r^{k-1} + \cdots + a_k)(r - b)^{d+1} = 0 \]
- where \(d \) is the degree of \(p(n) \)
Other Approaches...

- Change of Variables