
Leader Election

Coordina/on	 Algorithms:	

Leader Election

Let G = (V,E) define the network topology. Each
process i has a variable L(i) that defines the leader.
The goal is to reach a configuration, where

∀ i,j ∈ V : i,j are non-faulty ::
 (1) L(i) ∈ V and
 (2) L(i) = L(j) and
 (3) L(i) is non-faulty

Often reduces to maxima (or minima) finding problem.

(if we ignore the failure detection part)

Leader Election

Difference between mutual exclusion & leader election

The similarity is in the phrase “at most one process.” But,

Failure is not an issue in mutual exclusion, a new leader is
elected only after the current leader fails.

No fairness is necessary - it is not necessary that every
aspiring process has to become a leader.

Bully algorithm
 (Assumes that the topology is completely connected)

1. Send election message (I want to be the leader) to processes with
larger id

2. Give up your bid if a process with larger id sends a reply message
(means no, you cannot be the leader). In that case, wait for the
leader message (I am the leader). Otherwise elect yourself the leader
and send a leader message

3. If no reply is received, then elect yourself the leader, and broadcast a
leader message.

4. If you receive a reply, but later don’t receive a leader message from a
process of larger id (i.e the leader-elect has crashed), then re-initiate
election by sending election message.

Bully algorithm

 The worst-case message complexity = O(n3) (This is bad)

0 1 2 3 4 N-3 N-2 N-1

election

Node 0 sends N-1 election messages So, 0 starts all over again
Node 1 sends N-2 election messages
Node N-2 sends 1 election messages etc

Finally, node N-2 will be elected leader, but
before it sent the leader message, it crashed.

Leader crashed

Maxima finding on a unidirectional ring
Chang-Roberts algorithm.
Initially all initiator processes are red.
Each initiator process i sends out token <i>

{For each initiator i}
do token <j> received ⋀ j < i → skip (do nothing)

 token <j>⋀ j > i → send token <j>; color := black
 token <j> ⋀ j = i → L(i) := I {i becomes the leader}

od
{Non-initiators remain black, and act as routers}
do token <j> received → send <j> od

Message complexity = O(n2). Why?
What are the best and the worst cases?

0

1

2
3

4

n-1

5

The ids may not be nicely ordered
like this

Bidirectional ring
Franklin’s algorithm (round based)

In each round, every process sends
out probes (same as tokens) in both
directions to its neighbors.

Probes from higher numbered processes
will knock the lower numbered processes
out of competition.

In each round, out of two neighbors, at least
one must quit. So at least 1/2 of the current
contenders will quit.

Message complexity = O(n log n). Why?

0

1

2
3

4

n-1

5

Sample execution

0
2

1

5

9
36

7

0
2

1

5

9
36

7

0
2

1

5

9
36

7

after round 0 after round 1before round 0

Peterson’s algorithm
initially ∀i : color(i) = red, alias(i) = i
{program for each round and for each red process}
send alias; receive alias (N);
if alias = alias (N) I am the leader
 alias ≠ alias (N) send alias(N); receive alias(NN);

 if alias(N) > max (alias, alias (NN)) alias:= alias (N)
 alias(N) < max (alias, alias (NN)) color := black
 fi

fi
{N(i) and NN(i) denote neighbor and neighbor’s neighbor of i}

Peterson’s algorithm

0
2

1

5

9
36

7

before round 0

0
2

1

3
9

6

7

5

0
2

1

5

9
36

7 2

9

7

after round 0

Round-based. Finds maxima on a unidirectional ring using O(n log n)
messages. Uses an id and an alias for each process.

Synchronizers
Synchronous algorithms (round-based,
where processes execute actions in lock-step
synchrony) are easer to deal with than
asynchronous algorithms. In each round
(or clock tick), a process

(1) receives messages from neighbors,
(2) performs local computation
(3) sends messages to ≥ 0 neighbors

A synchronizer is a protocol that enables
synchronous algorithms to run on an
asynchronous system.

synchronizer

Asynchronous system

Synchronous algorithm

Synchronizers
“Every message sent in clock tick k must be received by the neighbors in
the clock tick k.” This is not automatic - some extra effort is needed.
Consider a basic Asynchronous Bounded Delay (ABD) synchronizer

Start tick 0

Start tick 0

Start tick 0

Each process will start the simulation of a new clock tick after 2d time
units, where d is the maximum propagation delay of each channel

Channel delays have an
upper bound d	

tick 0 tick 1 tick 2 tick 3

α-synchronizers
What if the propagation delay is arbitrarily large but finite?
The α-synchronizer can handle this.

1.  Send and receive messages for the current tick.
2.  Send ack for each incoming message, and receive ack

 for each outgoing message
3.  Send a safe message to each neighbor after sending and receiving

 all ack messages (then follow steps 1-2-3-1-2-3- …)

Simulation of each
clock tick

m

m
m

ack

ack
ack

Complexity of α-synchronizer
Message complexity M(α)
Defined as the number of messages passed around the entire
network for the simulation of each clock tick.

M(α) = O(|E|)

Time complexity T(α)
Defined as the number of asynchronous rounds needed for the
simulation of each clock tick.

T(α) = 3
(since each process exchanges m, ack, safe)

Complexity of α-synchronizer
 MA = MS + TS. M(α)

 TA = TS. T(α)

MESSAGE complexity
of the algorithm

implemented on top of the
asynchronous platform

Message complexity
of the original synchronous

algorithm

Time complexity
of the original synchronous

algorithm in rounds

TIME complexity
of the algorithm

implemented on top of the
asynchronous platform

Time complexity
of the original synchronous

algorithm

The β-synchronizer
Form a spanning tree with any node as the root. The
root initiates the simulation of each tick by sending
message m(j) for each clock tick j. Each process
responds with ack(j) and then with a safe(j) message
along the tree edges (that represents the fact that the
entire subtree under it is safe). When the root receives
safe(j) from every child, it initiates the simulation of
clock tick (j+1) using a next message.

To compute the message complexity M(β), note that
in each simulated tick, there are m messages of the original algorithm, m acks,
and (N-1) safe messages and (N-1) next messages along the tree edges.

Time complexity T(β) = depth of the tree.
For a balanced tree, this is O(log N)

γ-synchronizer

Uses the best features of both α and β
synchronizers. (What are these?)*

The network is viewed as a tree of clusters. Each
cluster has a cluster-head Within each cluster,
β-synchronizers are used, but for inter-cluster
synchronization, α-synchronizer is used

Preprocessing overhead for cluster formation.
The number and the size of the clusters is
a crucial issue in reducing the message and
time complexities

Cluster head

Example of application: Shortest path

•  Consider Synchronous Bellman-Ford:
•  O(n |E|) messages, O(n) rounds

–  Asynchronous Bellman-Ford
•  Many corrections possible (exponential), due to message delays.
•  Message complexity exponential in n.
•  Time complexity exponential in n, counting message pileups.

•  Using (e.g.) Synchronizer α:
•  Behaves like Synchronous Bellman-Ford.
•  Avoids corrections due to message delays.
•  Still has corrections due to low-cost high-hop-count paths.
•  O(n |E|) messages, O(n) time
•  Big improvement.

