
Introduction to OS Concepts

What is the Job of an OS?

● Two views...
– An interface between users/applications and

hardware.

– A hardware abstraction.

 OR

– A resource allocator, striving for,
● Efficiency
● Fairness
● Security

What Constitutes an OS?

● No agreed upon definition.

● Candidates:
– All of the software that comes with a computer.

– The one program that is always running.

– The kernel.

– The software responsible for interacting directly with
hardware.

● Wrinkles:
– Micro-kernels

Computer Hardware Review

● A simplified picture...

How Many Processors In That
Picture?

● The CPU executes arbitrary program
instructions.

● Different devices have their own processors and
buffers to manage device control.

CPU

● A very simple life – one instruction after another
(OIAA)

● Life starts when the bootstrap program loads
the OS (or an OS loader, or whatever it finds),
and points the CPU to the first instruction.

● An exception to OIAA: interrupts.
– Handling interrupts will be one of the OS's jobs.

Interrupts

● Interrupt vector contains addresses of interrupt
service routines.

● A trap is a software generated interrupt.

● An OS is interrupt driven.

● It doesn't do anything until an interrupt occurs.

Device I/O

● Two basic flavors:
– Programmed I/O – CPU reads directly from device

registers.

– DMA – Direct memory access. Device and memory
communicate directly.

● More efficient for large transfers.

The Memory Hierarchy

Caching

● Fundamental issues:
– We want CPU to be able to load and store data as

quickly as possible.

– We want storage to be cheap, but cheap storage is
slow.

● Solution is caching:
– Keep the data most likely to be accessed in small fast

storage.

– Not an easy problem, and one that will come up in
operating system design over and over.

System Architectures

● So far we have been talking about single CPU
systems.

● Multiple CPU systems are becoming more
common, and raise a new set of issues:
– Cache coherency.

– Efficient utilization of multiple CPUs.

Operating System Structure

● Modern operating systems are designed to be:
– Multiprogrammed – multiple programs running “at

once”.

– When one program takes a break, another is ready to
step in.

– Time shared – multiple interactive applications,
possibly multiple users, running at once.

● Accomplishing this requires solving many
problems...

Process Management

● A process is an executing program.

● The OS must:
– Create and destroy

– Pause and resume

– Allow for synchronization

– Allow for communication

– Avoid deadlock

Memory Management

● Potentially more memory in use by all of the
active processes than exists in the system.

● A solution is virtual memory.

● OS must allocate memory, and handle caching.

File System Management

● Disk controllers basically present secondary
storage as an undifferentiated place to put 0's
and 1's.

● It is the OS's job to organize that into a file
system.

I/O Management

● A large chunk of the code in an OS is device
drivers.

● The specific protocols for dealing with many
different devices.

Networking

● Protocols for exchanging information with other
computers.

Protection

● Users need to be protected from each other.
– E.g. permissions.

● Processes need to be protected from each
other.
– E.g. virtual memory.

● The system needs to be protected from
malicious or erroneous code.
– E.g. kernel mode bit.

Security

● The system needs to be protected from
malicious outsiders.

Stuff We Won't Talk About

● Real time OS's

● Embedded OS's

● Hand-held OS's

