
System Calls +

The Plan Today...

● System Calls and API's

● Basics of OS design

● Virtual Machines

System Calls

● System programs interact with the OS (and
ultimately hardware) through system calls.

● Called when a user level program needs a
service from the OS.
– Generally written in C/C++

– Execute in kernel mode – code can access protected
hardware.

– Can't be called like a normal function (more soon...)

Types of System Calls

● Process control
● File management
● Device management
● Information maintenance
● Communications

– Message passing

– Shared memory

● Protection

Application Programming
Interface

● Application code generally does not invoke
system calls directly.

● Programmer calls functions defined by an API.
– Win32 API (Windows OSs)

– POSIX API (Most Unix-like OS's)
● You can check it out at

http://www.unix.org/single_unix_specification/
● Basically a bunch of C header files along with precise,

legalistic, descriptions of functionality.

http://www.unix.org/single_unix_specification/

Win32 API Example

– HANDLE file—the file to be read

– LPVOID buffer—a buffer where the data will be read into and written
from

– DWORD bytesToRead—the number of bytes to be read into the buffer

– LPDWORD bytesRead—the number of bytes read during the last read

– LPOVERLAPPED ovl—indicates if overlapped I/O is being used

Unix API Invocation Example

More Linux Trivia

● In Linux API is provided by glibc: GNU libc.

● That's why you'll hear GNU/Linux OS.

● You still don't have a useful computer until you
get some application programs.

● That's where distributions come in.
– Debian, Fedora, Ubuntu etc.

Why Use an API?

● API tends to be more “programmer friendly”
than direct system calls.
– Designing an OS involves trade-offs between ease of

use, and ease of implementation.
● System calls – driven by ease of implementation
● API – driven by ease of use.

– Some API calls are basically wrappers for system
calls.

– Some are much more complex.

● Coding to an API results in more portable code.

How Do System Calls Work?
(In Linux)

● Initiated by a software interrupt.
– Architecture dependent.

● On x86 architectures:
– Every interrupt has a unique number.

– Copy appropriate number to register eax.

– Copy syscall parameters to registers:
● ebx, ecx, edx, esi , edi (for up to five parameters.)
● Put an address in a register for more than five.

– Execute software interrupt instruction:
● int $0x80

API Example

#include <stdlib.h>

int main () {
 exit(0);
}

“Direct” syscall Example

#include <stdio.h>
#include <sys/syscall.h>

#define __NR_getppid 64

int main()
{
 printf("%d\n", syscall(__NR_getppid));

}

strace

● Let's look at an example...

An Aside: Macros

● C preprocessor can define entities to be
expanded in the code.

● Macros can take parameters...

● It's just simple text substitution.

#define BIGNUM 999999
...
if (a > BIGNUM)

printf(“a is huge.”);

#define max(A,B) (A) > (B) ? (A) : (B)
...
printf(“max of c and d is %d\n”, max(c,d));

How Does Linux Handle the
System Call?

● There is architecture dependent code in
– arch/whatever_architecture.

● Assembly code for handling system calls is in:

– arch/x86/kernel/entry_32.S (or _64. S)

– (Until recently it was: arch/i386/kernel/entry.S)

● Other interesting locations:

– arch/x86/kernel/syscall_table_32.S

– kernel/sys.c

● There is architecture dependent code in
– arch/whatever_architecture.

● Assembly code for handling system calls is in:

– arch/x86/kernel/entry_32.S (or _64. S)

– (Until recently it was: arch/i386/kernel/entry.S)

● Other interesting locations:

– ar ch/ x86/ ker nel / syscal l _t abl e_32. S

–

http://lxr.linux.no/#linux+v2.6.30.10/arch/x86/kernel/entry_32.S
http://lxr.linux.no/source/arch/i386/kernel/entry.S
http://lxr.linux.no/#linux+v2.6.30.10/arch/x86/kernel/syscall_table_32.S
http://lxr.linux.no/#linux+v2.6.30.10/kernel/sys.c%23L212
http://lxr.linux.no/#linux+v2.6.30.10/arch/x86/kernel/entry_32.S
http://lxr.linux.no/source/arch/i386/kernel/entry.S

OS Design: Separate Policy and
Mechanism

● How to do something (mechanism) vs. what
should be done (policy).

● E.g. There needs to be a mechanism to swap
out interactive process every N milliseconds.

● N should not be part of the implementation.

OS Design: Basic Organization

● Early OS designs were not particularly modular:
– MS-Dos

● Some more principled approaches:
– Layered OS

– Micro-Kernel

– Modular OSs

Layered Design

● Challenges:
– Not always clear what

should go in each layer

– Overhead in moving from
one layer to the next.

Micro-Kernels

● Kernel only provides some very basic
functionality:
– Process management.

– Process communication via message passing.

● Everything else is handled by user level code.

● Advantages:
– Easy to get a small Kernel right.

– Easy to port a small Kernel.

– Elegant design.

● Main disadvantage: slow.

Modular OS

● Most modern operating systems (including
Linux) implement kernel modules.
– Uses object-oriented approach.
– Each core component is separate.
– Each talks to the others over known interfaces.
– Each is loadable as needed within the kernel.

● Modules interact through normal function calls.
– Not much overhead at run time.

Virtual Machines

● Allow us to simultaneously run multiple OS's on
a single computer.

● Many uses:
– OS design and testing.

– Maintaining legacy systems.

– “Honeypots”

Implementing VMs

● You can emulate every hardware instruction in
software, e.g. Bochs.
– Performance is not good.

– Relatively easy to get an OS running.

● You can depend on functionality from the host
OS, e.g. User Mode Linux
– Instructions run directly on hardware, system calls

are captured and sent to host OS.

– Easier if client OS is similar to host OS.

– Better performance.

● Other VM systems: VMWare, Xen, VirtualBox

Acknowledgments

● Portions of these slides are taken from Power
Point presentations made available along with:
– Silberschatz, Galvin, and Gagne. Operating System

Concepts, Seventh Edition.

● Original versions of those presentations can be
found at:
– http://os-book.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

