System Calls +

The Plan Today...

« System Calls and API's
« Basics of OS design
« Virtual Machines

System Calls

« System programs interact with the OS (and
ultimately hardware) through system calls.

e Called when a user level program needs a
service from the OS.

- Generally written in C/C++

- Execute in kernel mode — code can access protected
hardware.

- Can't be called like a normal function (more soon...)

Types of System Calls

Process control

-lle management

Device management
nformation maintenance
Communications

- Message passing
- Shared memory
Protection

Application Programming
Interface

« Application code generally does not invoke
system calls directly.

 Programmer calls functions defined by an API.

- Win32 APl (Windows OSs)
- POSIX API (Most Unix-like OS's)

* You can check it out at
http://www.unix.org/single_unix_specification/

« Basically a bunch of C header files along with precise,
legalistic, descriptions of functionality.

http://www.unix.org/single_unix_specification/

Win32 APl Example

return value

'

BOOL ReadFile ¢ (HANDLE file,
LPVOID buffer,
T DWORD bytes To Read, | parameters
LPDWORD bytes Read,
LPOVERLAPPED ovl) ;

function name —

HANDLE file—the file to be read

LPVOID buffer—a buffer where the data will be read into and written
from

DWORD bytesToRead—the number of bytes to be read into the buffer
LPDWORD bytesRead—the number of bytes read during the last read
LPOVERLAPPED ovl—indicates if overlapped I/O is being used

Unix APl Invocation Example

#include <stdio.h>
int main ()

{

printf ("Greetings"); |-

return o;
}
user
mode =
standard C library
Ikernel

mode
Qrite ()
write ()

system call

e e

More Linux Trivia

In Linux API is provided by glibc: GNU libc.
That's why you'll hear GNU/Linux OS.

You still don't have a useful computer until you
get some application programs.

That's where distributions come in.

- Debian, Fedora, Ubuntu etc.

Why Use an API?

* APl tends to be more “programmer friendly”
than direct system calls.

- Designing an OS involves trade-offs between ease of
use, and ease of implementation.

« System calls - driven by ease of implementation
« APl — driven by ease of use.

- Some API calls are basically wrappers for system
calls.

- Some are much more complex.
« Coding to an API results in more portable code.

How Do System Calls Work?
(In Linux)

 |nitiated by a software interrupt.
- Architecture dependent.
« On x86 architectures:

- Every interrupt has a unigue number.
- Copy appropriate number to register eax.
- Copy syscall parameters to registers:

« ebx, ecx, edx, esi, edi (forup to five parameters.)
« Put an address in a register for more than five.
- Execute software interrupt instruction:
int $0x80

APl Example

#include <stdlib.h>

int main () {
ex1it(0);
}

“Direct” syscall Example

#include <stdio.h>
#include <sys/syscall.h>

#define __ _NR_getppid 64

int main()

{
printf("%d\n", syscall(__ NR_getppid));

strace

« Let's look at an example...

An Aside: Macros

e C preprocessor can define entities to be
expanded in the code.

#define BIGNUM 999999

if (a > BIGNUM)
printf(“a is huge.”);

 Macros can take parameters...
#define max(A,B) (A) > (B) ? (A) : (B)

printf(“max of c and d is %d\n”, max(c,d));

 It's just simple text substitution.

How Does Linux Handle the
System Call?

 There is architecture dependent code In
- arch/whatever_architecture.
« Assembly code for handling system calls is in:
- arch/x86/kernel/entry_32.S (or 64.5)
- (Until recently it was: arch/i386/kernel/entry.S)
e Other interesting locations:
- arch/x86/kernel/syscall_table_32.S

- kernel/sys.c

http://lxr.linux.no/#linux+v2.6.30.10/arch/x86/kernel/entry_32.S
http://lxr.linux.no/source/arch/i386/kernel/entry.S
http://lxr.linux.no/#linux+v2.6.30.10/arch/x86/kernel/syscall_table_32.S
http://lxr.linux.no/#linux+v2.6.30.10/kernel/sys.c%23L212
http://lxr.linux.no/#linux+v2.6.30.10/arch/x86/kernel/entry_32.S
http://lxr.linux.no/source/arch/i386/kernel/entry.S

OS Design: Separate Policy and
Mechanism

« How to do something (mechanism) vs. what
should be done (policy).

 E.g. There needs to be a mechanism to swap
out interactive process every N milliseconds.

N should not be part of the implementation.

OS Design: Basic Organization

« Early OS designs were not particularly modular:
- MS-Dos
« Some more principled approaches:

- Layered OS
- Micro-Kernel
- Modular OSs

Layered Design

e Challenges:

- Not always clear what
should go in each layer

- Overhead in moving from

one layer to the next.

layer N
user interface

layer 1

layer O
hardware

Micro-Kernels

Kernel only provides some very basic
functionality:

- Process management.
- Process communication via message passing.

Everything else is handled by user level code.
Advantages:

- Easy to get a small Kernel right.
- Easy to port a small Kernel.
- Elegant design.

Main disadvantage: slow.

Modular OS

« Most modern operating systems (including
Linux) implement kernel modules.

- Uses object-oriented approach.

- Each core component is separate.

- Each talks to the others over known interfaces.
- Each is loadable as needed within the kernel.

 Modules interact through normal function calls.

- Not much overhead at run time.

Virtual Machines

« Allow us to simultaneously run multiple OS's on
a single computer.

« Many uses:
- OS design and testing.
- Maintaining legacy systems.
- “Honeypots”

Implementing VMs

 You can emulate every hardware instruction in
software, e.g. Bochs.

- Performance is not good.
- Relatively easy to get an OS running.

 You can depend on functionality from the host
OS, e.g. User Mode Linux

- Instructions run directly on hardware, system calls
are captured and sent to host OS.

- Easier if client OS is similar to host OS.
- Better performance.

e Other VM systems: VMWare, Xen, VirtualBox

Acknowledgments

« Portions of these slides are taken from Power
Point presentations made available along with:

- Silberschatz, Galvin, and Gagne. Operating System
Concepts, Seventh Edition.

e Original versions of those presentations can be
found at:

- http://os-book.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

