Disks & RAIDs

Slides Courtesy of Mary Jane Irwin (www.cse.psu.edu/~mji)
www.cse.psu.edu/~cg431
With Modifications by Nathan Sprague

[Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005]
Magnetic Disk

- **Purpose**
 - Long term, nonvolatile storage
 - Lowest level in the memory hierarchy
 - slow, large, inexpensive

- **General structure**
 - A rotating platter coated with a magnetic surface
 - A moveable read/write head to access the information on the disk

- **Typical numbers**
 - 1 to 5 (1 or 2 surface) platters per disk of 1” to 5.25” in diameter
 - Rotational speeds of 5,400 to 15,000 RPM
 - 10,000 to 50,000 tracks per surface
 - cylinder - all the tracks under the head at a given point on all surfaces
 - 100 to 500 sectors per track
 - the smallest unit that can be read/written (typically 512B)
Magnetic Disk Characteristic

- Disk read/write components
 1. **Seek time**: position the head over the proper track (3 to 14 ms avg)
 - due to locality of disk references the actual average seek time may be only 25% to 33% of the advertised number
 2. **Rotational latency**: wait for the desired sector to rotate under the head (½ of 1/RPM converted to ms)
 - $0.5/5400\text{RPM} = 5.6\text{ms}$ to $0.5/15000\text{RPM} = 2.0\text{ms}$
 3. **Transfer time**: transfer a block of bits (one or more sectors) under the head to the disk controller’s cache (30 to 100 MB/s are typical disk transfer rates)
 - the disk controller’s “cache” takes advantage of spatial locality in disk accesses
 - cache transfer rates are much faster (e.g., 320 MB/s)
 4. **Controller time**: the overhead the disk controller imposes in performing a disk I/O access (typically < .2 ms)
Typical Disk Access Time

- The average time to read or write a 512B sector for a disk rotating at 10,000RPM with average seek time of 6ms, a 50MB/sec transfer rate, and a 0.2ms controller overhead

\[
\text{Avg disk read/write} = 6.0 \text{ms} + \frac{0.5}{(10000\text{RPM}/(60\text{sec/minute}))} + \frac{0.5\text{KB}}{(50\text{MB/sec})} + 0.2\text{ms} = 6.0 + 3.0 + 0.01 + 0.2 = 9.21\text{ms}
\]

If the measured average seek time is 25% of the advertised average seek time, then

\[
\text{Avg disk read/write} = 1.5 + 3.0 + 0.01 + 0.2 = 4.71\text{ms}
\]

- The rotational latency is usually the largest component of the access time
Solid State Drives

- Flash memory – non-volatile storage that uses transistor based memory cells.
 - nor flash – fast reads, slow writes
 - Frequently used for EEPROM
 - nand flash – slower reads, faster writes, higher density
 - Used for drives and general storage

- Limited to approximately 100,000 – 1,000,000 write cycles
 - Drives incorporate load-leveling logic.

- No rotational or seek latency.

- More expensive than traditional drives (2009)
 - SSD: About $3.00/GB (120GB drive)
 - Disk: About $.10/GB (1TB drive)

- Let's compare some data sheets...
Dependability, Reliability, Availability

- Reliability – measured by the mean time to failure (MTTF).
- Service interruption is measured by mean time to repair (MTTR)
- Availability – a measure of service accomplishment
 \[\text{Availability} = \frac{\text{MTTF}}{\text{MTTF} + \text{MTTR}} \]

- To increase MTTF, either improve the quality of the components or design the system to continue operating in the presence of faulty components
 1. Fault avoidance: preventing fault occurrence by construction
 2. Fault tolerance: using redundancy to correct or bypass faulty components
RAIDs: Disk Arrays

Redundant Array of Inexpensive Disks

- Arrays of small and inexpensive disks
 - Increase potential throughput by having many disk drives
 - Data is spread over multiple disk
 - Multiple accesses are made to several disks at a time

- Reliability is lower than a single disk

- But availability can be improved by adding redundant disks (RAID)
 - Lost information can be reconstructed from redundant information
 - MTTR: mean time to repair is in the order of hours
 - MTTF: mean time to failure of disks is tens of years
RAID: Level 0 (No Redundancy; Striping)

- Multiple smaller disks as opposed to one big disk
 - Spreading the blocks over multiple disks – **striping** – means that multiple blocks can be accessed in parallel increasing the performance
 - A 4 disk system gives four times the throughput of a 1 disk system
 - Same cost as one **big** disk – assuming 4 small disks cost the same as one big disk

- No redundancy, so what if one disk fails?
 - Failure of one or more disks is more likely as the number of disks in the system increases
RAID: Level 1 (Redundancy via Mirroring)

- Uses twice as many disks as RAID 0 (e.g., 8 smaller disks with second set of 4 duplicating the first set) so there are always two copies of the data
 - # redundant disks = # of data disks so twice the cost of one big disk
 - writes have to be made to both sets of disks, so writes would be only 1/2 the performance of RAID 0

- What if one disk fails?
 - If a disk fails, the system just goes to the “mirror” for the data
RAID: Level 0+1 (Striping with Mirroring)

- Combines the best of RAID 0 and RAID 1, data is striped across four disks and mirrored to four disks
 - Four times the throughput (due to striping)
 - # redundant disks = # of data disks so twice the cost of one big disk
 - writes have to be made to both sets of disks, so writes would be only 1/2 the performance of RAID 0
- What if one disk fails?
 - If a disk fails, the system just goes to the “mirror” for the data
RAID: Level 3 (Bit-Interleaved Parity)

- Cost of higher availability is reduced to $1/N$ where N is the number of disks in a protection group
 - # redundant disks = $1 \times$ # of protection groups
 - writes require writing the new data to the data disk as well as computing the parity, meaning reading the other disks, so that the parity disk can be updated

- Can tolerate limited disk failure, since the data can be reconstructed
RAID: Level 3 (Bit-Interleaved Parity)

- Cost of higher availability is reduced to $1/N$ where N is the number of disks in a **protection group**
 - # redundant disks = $1 \times$ # of protection groups
 - writes require writing the new data to the data disk as well as computing the parity, meaning reading the other disks, so that the parity disk can be updated

- Can tolerate **limited** disk failure, since the data can be reconstructed
RAID: Level 4 (Block-Interleaved Parity)

- Cost of higher availability still only 1/N but the parity is stored as blocks associated with sets of data blocks
 - Four times the throughput (striping)
 - # redundant disks = 1 × # of protection groups
 - Supports “small reads” and “small writes” (reads and writes that go to just one (or a few) data disk in a protection group)
 - by watching which bits change when writing new information, need only to change the corresponding bits on the parity disk
 - the parity disk must be updated on every write, so it is a bottleneck for back-to-back writes

- Can tolerate limited disk failure, since the data can be reconstructed
Small Writes

- RAID 3 small writes

 New D1 data

 3 reads and 2 writes involving all the disks

- RAID 4 small writes

 New D1 data

 2 reads and 2 writes involving just two disks
RAID: Level 5 (Distributed Block-Interleaved Parity)

- Cost of higher availability still only 1/N but the parity block can be located on any of the disks so there is no single bottleneck for writes
 - Still four times the throughput (striping)
 - # redundant disks = 1 × # of protection groups
 - Supports “small reads” and “small writes” (reads and writes that go to just one (or a few) data disk in a protection group)
 - Allows multiple simultaneous writes as long as the accompanying parity blocks are not located on the same disk

- Can tolerate *limited* disk failure, since the data can be reconstructed
By distributing parity blocks to all disks, some small writes can be performed in parallel.