PC

Instruction [15-0]

Instruction [5-0]

A

> >0
M
Add \ u
X
— ALU > 1
4 Add result
RegDSt /
Branch
MemRBead
Instruction [31-26] MemtoReg
Control Al UOD
MemWrite
/ ALUSIc
RegWrite
Instruction [25—21] Read
Read - i
| &> register 1
address 9 Read
Instruction [20—16] Read data 1
- Z
Instruction |14 : register 2 AL ero
131-0] M Write Read fo r(?slz}l) Address Rde:;g !
Instruction Instruction [15-11] | x register 9122 M I\L/II
memory at Sl LT X
| Write 1
data Registers Data

Write: memory
data




Mult1 Cycle Datapath

Slides courtesy of Professor Tod Amon,
Southern Utah University, with minor
modifications by Nathan Sprague



® ALU control lines

0000 = and

0001 = or

0010 = add

0110 = subtract
0111 = slt

1100 = NOR

B — T —
Amom | Awow | vs [P s [/ [P [ R0
x x x x x GO0

0 1] X

X 1 X X 0110
1 X X X 0 0 0 0 L)
1 X X X o o 1 o 0110
1 X X X o 1 o o VL]
1 X X X 0 1 0 1 Q001
1 X X X 1 0 1 0 0111

FIGURE 5.13 The truth table for the three ALU control bits (called Operation). The inputs
are the ALUCp and function code field. Only the entries for which the ALL control is asserted are shown.
Some don't-care entries have been added. For exampls, the ALUOp does not use the enceding 11, 50 the
truth table can contain entries 1% and X1, rather than 10 and 01. Also, when the function feld is usad, the
first two bits {FS and F4) of these instructions are always 10, so they are don't-care terms and are replaced
with 377 in the truth table.



® Simple combinational logic

Inputs
Op5
Op4
ALUOp Op3
! ALU control block Op2
ALUOpO Opf
1 Op0
ALUOp1
e 00&)06 OJJUI olo I 000 OL
F3 Operation2 | ) k) k ! ] Outputs
» Operation R-f i I b
— I N 3
F1 ) ALUSrc
Operation0
MemtoReg
FO ' )——I >
D— RegWrite
MemRead
MemWrite
¢$——— Branch
ALUOp1
ALUOpO




Control lines based on opcode

Memto- | Reg | Mem | Mem
-Instruction{ RegDst { ALUSrc | Bon | Writa | Raad | Writa | Branch ALUOp11 ALUpO
R-format 1 0 0 1 0 0 0 1 Q0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beg X 0 X 0 0 0 1 0 1




Problems with single cycle
implementation...



Mult-cycle design...

PC

—~xcZ O

Address

Memory
MemData

Write
data

\ 4

\ 4

xc=Z©

4> 1M

Instruction
[25-21]
Instruction
20-16
[ | ] | 5
Instruction M
[15-0] | [Instruction| u
o 15-11 X
Instruction
register 0
Instruction '\lj'
[15-0] X
|——>
Memory 16
data
register

Read
register 1 Read
Read data 1
register 2
_ Registers

Wn_te Read
register data 2
Write
data

Sign 32
extend

Zero

ALU aALU
result

ALUOut




/N

PC

xc=Z @

PCWriteCond PCSource
PCWrite | Outputs\ ALUOp
lorD
ALUSrcB
MemRead | Control )
MemWrite ALUSrcA
MemtoReg [E?— %] RegWrite g
IRWrite \ RegDst >0
\\“ m :lcjjr(;]r%ss | 1
Instruc @Tr25-01 5, I?a?tlg <8 [31-0] ||,
Instruction . \/
[31-26] J A PC [31-28]
Instruction - Regd — (I)\/Iw
Address [25—-21] register 1 Read Y
" Instruction | | | | Read data 1 l B &
emory I [20-16] I_’/O register 2
MemData . .
Instruction ¢ M _ Registers ALUOut [?
[15-0] | [Instruction| u er_tet Read 5
Write J15-11] | X | |register +/
data Instruction data 2 41 M
register Write o u
0 data |2 x
Instruction M
[15-0] g
—| Memory |_
data ¢ 16 > Sign 32
register extend
Instruction [5—0]

xc




Five Execution Steps

® Instruction Fetch
® Instruction Decode and Register Fetch

® Execution, Memory Address Computation, or
Branch Completion

® Memory Access or R-type instruction
completion

® Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!



Step 1: Instruction Fetch

® Use PC to get instruction and put it in the
nstruction Register.

® Increment the PC by 4 and put the result back in
the PC.

IR <= Memory[PC];
PC <= PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?



Step 2: Instruction Decode and
Register Fetch

® Read registers rs and rt in case we need them

® Compute the branch address in case the
iInstruction is a branch

A <= Reg[IR[25:21]];

B <= Reg[IR[20:161]17;

ALUOut <= PC + (sign -
extend (IR[15:0]) << 2);

® We aren't setting any control lines based on the
iInstruction type
(we are busy "decoding" it in our control logic)



Step 3 (instruction dependent)

® ALU is performing one of three functions,
based on instruction type

® Memory Reference:
ALUOut <= A + s1ign-
extend (IR[15:0]);

" R-type:
ALUOut <= A op Bj;
® Branch:
if (A==B) PC <= ALUOut;



Step 4 (R-type or memory-

access)
® Loads and stores access memory

MDR <= Memory[ALUOut];

or
Memory [ ALUOut ] <= B;

" R-type instructions finish

Reg[IR[15:11]] <= ALUOut;



Write-back step

* Reg[IR[20:16]] <= MDR;

Which instruction needs this?



Implementing the Control

® Value of control signals is dependent upon:
— what instruction is being executed
— which step is being performed

® Use the information we’ve accumulated to specify
a finite state machine

— specify the finite state machine graphically, or
— use microprogramming

" Implementation can be derived from specification



Graphical Specification of FSM

" Note:

— don’t care if not mentioned
— asserted if name only
— otherwise exact value

® How many state
bits will we need?

Instruction fetch Instruction decode/

register fetch

MemRead
ALUSrcA=0

lorD =0
IRWrite ALUSrcA=0
Start ALUSIrcB = 01 ALUSrcB = 11
ALUOp = 00 ALUOp = 00
PCWrite
PCSource = 00
W)
v - S
oS @ —
R o‘\ ;&Q fé’ >
\\,\“\ ,/Q‘ U ]
Q R oy S
© S Q )
Memory address Branch Jump
computation Execution completion completion

ALUSIrcA =1
ALUSrcB = 10
ALUOp = 00

ALUSIrcA = 1
ALUSrcB = 00
ALUOp =10

ALUSIrcA = 1
ALUSIrcB = 00
ALUOp = 01
PCWriteCond

PCWrite
PCSource = 10

Q PCSource = 01
= %,
I -
o | Memory Memory
Q access access R-type completion
5
MemRead MemWrite RegDst = 1
lorD = 1 lorD = 1 RegWrite
MemtoReg = 0

Memory read
completon step

RegDst = 1

RegWrite
MemtoReg = 0




Finite State Machine for Control

® Implementation:

Control logic

Inputs
A

Outputs 3

PCWrite

PCWriteCond

lorD
MemRead

[ Memwrite
[Rwrite
[MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
[RegWrite
RegDst

NS3
NS2
NS1
NSO

<t 0| N =
o

ol O O] ©

Op5
p
p
p

Op0

S3

Instruction register

State register

opcode field

wk

:

t




PLA Implementation

Op5

Op4

Op3

Op2

Opfi

St

S0

 fgadadace

—e

PCWrite

PCWriteCond

lorD
MemRead
MemWrite
IRWrite
MemtoReg
PCSourcet
PCSource0
ALUOp1
ALUORO
ALUSrcB1
ALUSrcBO
ALUSrcA
RegWrite
RegDst
NS3

NS2

NS1

NSO



