

The Master Method

COMP215: Design \& Analysis of
Algorithms

Today

- Integer Multiplication Revisited
- Formal Statement
- Examples

Integer Multiplication Revisited

$$
x * y=2698 * 4263=?
$$

- The problem is to multiply two n-digit numbers
- The primitive operations are the addition or multiplication of two single-digit numbers.
- The iterative grade-school algorithm requires $\Theta\left(n^{2}\right)$ operations to multiply two n-digit numbers.

Integer Multiplication Revisited

- The RecIntMult Algorithm:

$$
x \cdot y=10^{n} \cdot(a \cdot c)+10^{n / 2} \cdot(a \cdot d+b \cdot c)+b \cdot d
$$

- To describe this formally is by a recurrence:
- Let $\mathrm{T}(\mathrm{n})$ denote the maximum number of operations used by this recursive algorithm to multiply two n-digit numbers
- A recurrence expresses a running time bound $\mathrm{T}(\mathrm{n})$ in terms of the number of operations performed by recursive calls. The recurrence for the RecIntMult alaorithm is

Integer Multiplication Revisited

- Karatsuba's recursive algorithm for integer multiplicat

$$
x^{*} y=10^{n *}(a * c)+10^{n / 2} *\left(a * d+b^{*} c\right)+b^{*} d
$$

- Instead of recursively computing $a^{*} d$ or $b^{*} c$, we recursively compute the product of $\mathrm{a}+\mathrm{b}$ and $\mathrm{c}+\mathrm{d}$.
- Compute $\mathrm{a}+\mathrm{b}$ and $\mathrm{c}+\mathrm{d}$ using grade-school addition, and recursively compute $(a+b)$ * $(c+d)$

Quiz 4.1

Which recurrence best describes the running time of the Karatsuba algorithm for integer multiplication?
a) $T(n) \leq 2 \cdot T\left(\frac{n}{2}\right)+O\left(n^{2}\right)$
b) $3 \cdot T\left(\frac{n}{2}\right)+O(n)$
c) $3 \cdot T\left(\frac{n}{2}\right)+O\left(n^{2}\right)$
d) $4 \cdot T\left(\frac{n}{2}\right)+O(n)$

Formal Statement

Step 1

Standard Recurrence Format

Base case: $T(n)$ is at most a constant for all sufficiently small n. ${ }^{4}$

General case: for larger values of n,

$$
T(n) \leq a \cdot T\left(\frac{n}{b}\right)+O\left(n^{d}\right) .
$$

Parameters:

- $a=$ number of recursive calls
- $b=$ input size shrinkage factor
- $d=$ exponent in running time of the "combine step"

Step 2

Theorem 4.1 (Master Method) If $T(n)$ is defined by a standard recurrence, with parameters $a \geq 1, b>1$, and $d \geq 0$, then

$$
T(n)=\left\{\begin{array}{lll}
O\left(n^{d} \log n\right) & \text { if } a=b^{d} & \mid \text { Case } 1] \tag{4.2}\\
O\left(n^{d}\right) & \text { if } a<b^{d} & {[\text { Case } 2]} \\
O\left(n^{\log a} a\right) & \text { if } a>b^{d} & {[\text { Case } 3] .}
\end{array}\right.
$$

Examples:

$$
T(n)=\left\{\begin{array}{lll}
O\left(n^{d} \log n\right) & \text { if } a=b^{d} & \mid \text { Case } 1] \\
O\left(n^{d}\right) & \text { if } a<b^{d} & \text { |Case 2] } \\
O\left(n^{\log a}\right) & \text { if } a>b^{d} & \text { |Case 3]. }
\end{array}\right.
$$

- MergeSort: O(n logn)

$$
\begin{aligned}
& -a ? \\
& -b ? \\
& -d ?
\end{aligned}
$$

2

2
1

MergeSort

Input: array A of n distinct integers.
Output: array with the same integers, sorted from smallest to largest.
// ignoring base cases
C := recursively sort first half of A
$D:=$ recursively sort second half of A
return Merge (C, D)

Examples:

Theorem 4.1 (Master Method) If $T(n)$ is defined by a standard recurrence, with parameters $a \geq 1, b>1$, and $d \geq 0$, then

$$
T(n)=\left\{\begin{array}{lll}
O\left(n^{d} \log n\right) & \text { if } a=b^{d} & \mid \text { Case } 1] \\
O\left(n^{d}\right) & \text { if } a<b^{d} & \text { |Case 2] } \\
O\left(n^{\left.\operatorname{logb}_{b} a\right)}\right. & \text { if } a>b^{d} & \text { Casese } 3 \mid .
\end{array}\right.
$$

- Binary search
$-a$?
-b?
$-d$?

Pseudocode: A Recursive Binary Search Algorithm.

```
procedure binary search(i, j, x: integers, 1\leqi\leqj\leqn)
m := \lfloor(i+j)/2\rfloor
if x=\mp@subsup{a}{m}{}}\mathrm{ then
    return m
else if (x<\mp@subsup{a}{m}{}}\mathrm{ and i}<\textrm{m})\mathrm{ then
    return binary search(i, m - 1, x)
else if ( }x>\mp@subsup{a}{m}{}\mathrm{ and j>m) then
    return binary search(m + 1, j, x)
else return 0
```


Examples:

$$
T(n)=\left\{\begin{array}{lll}
O\left(n^{d} \log n\right) & \text { if } a=b^{d} & \mid \text { Case } 1] \\
O\left(n^{d}\right) & \text { if } a<b^{d} & \mid \text { Case a] } \\
O\left(n^{\log a}\right) & \text { if } a>b^{d} & \text { |Case 3]. }
\end{array}\right.
$$

- RecIntMult

$\mathrm{O}\left(\mathrm{n}^{2}\right)$
$-a$?
4
$-b$?
2
$-d$?

Examples:

$$
T(n)=\left\{\begin{array}{lll}
O\left(n^{d} \log n\right) & \text { if } a=b^{d} & \mid \text { Case } 1] \\
O\left(n^{d}\right) & \text { if } a<b^{d} & \mid \text { Case 2] } \\
O\left(n^{\log a}\right) & \text { if } a>b^{d} & \mid \text { Case } 3 \mid .
\end{array}\right.
$$

- Karatsuba's recursive algorithm

$\mathrm{O}\left(\mathrm{n}^{1.59}\right)$
$-a$?
3
$-b$?
2
$-d$?

Examples:

Theorem 4.1 (Master Method) If $T(n)$ is defined by a standard recurrence, with parameters $a \geq 1, b>1$, and $d \geq 0$, then

$$
T(n)=\left\{\begin{array}{lll}
O\left(n^{d} \log n\right) & \text { if } a=b^{d} & {[\text { Case } 1]} \tag{4,2}\\
O\left(n^{d}\right) & \text { if } a<b^{d} & {[\text { Case } 2]} \\
O\left(n^{\left.\log _{b} a\right)}\right. & \text { if } a>b^{d} & {[\text { Case } 3] .}
\end{array}\right.
$$

- $T(n)=3 T(n / 2)+n^{2}$
- $T(n)=7 T(n / 3)+n^{2}$
- $T(n)=9 T(n / 3)+n^{2}$
- $T(n)=7 T(n / 4)+n$

