

Introduction

COMP215: Design & Analysis of Algorithms

Today

- Merge Sort: The Algorithm
- Merge Sort: The Analysis
- Guiding Principles for the Analysis of Algorithms

- Why begin with MergeSort?
 - Oldie but a goodie, it is the standard sorting algorithm in a number of programming libraries.
 - Canonical divide-and-conquer algorithm.
 - Our running time analysis of MergeSort exposes a number of more general guiding principles.
 - Warm-up for the master method.

6 5 3 1 8 7 2 4

• Sorting:

Problem: Sorting

Input: An array of n numbers, in arbitrary order. Output: An array of the same numbers, sorted from smallest to largest.

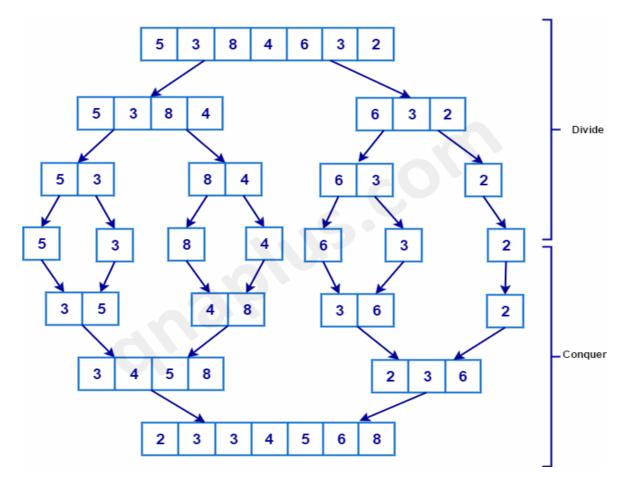
Some Algorithms:

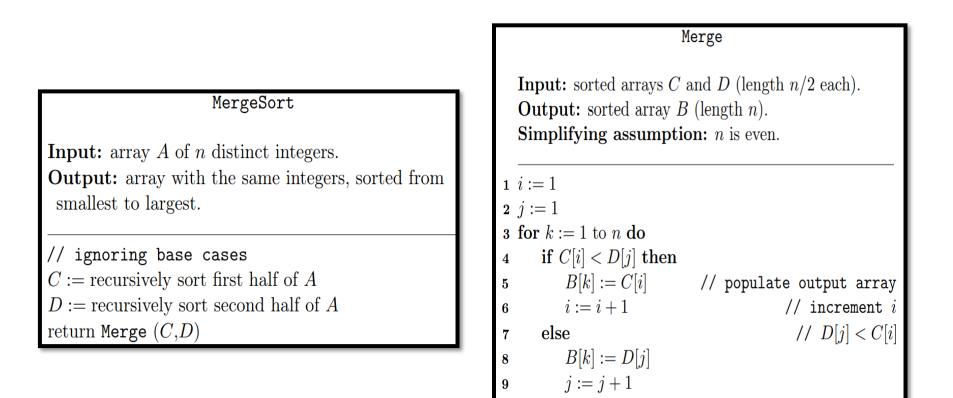
- Insertion Sort
- Selection Sort
- Bubble Sort

- Insertion Sort 6 5 3 1 8 7 2 4
- Selection Sort 5 3 4 1
- Bubble Sort

	5	3		4	1		2	
Selection Sort								
6	5	3	1	8	7	2	4	

• Example:



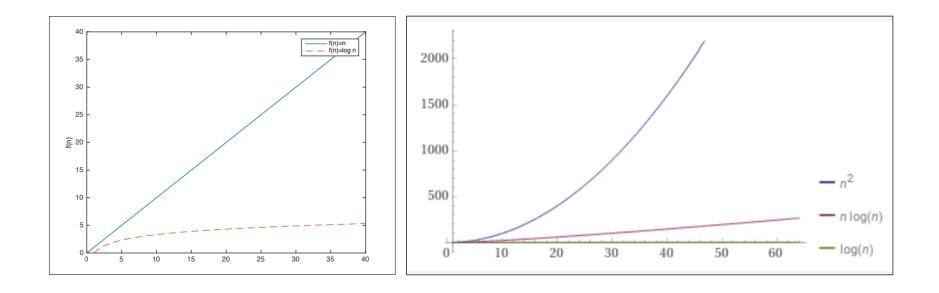


• Running Time of Merge:

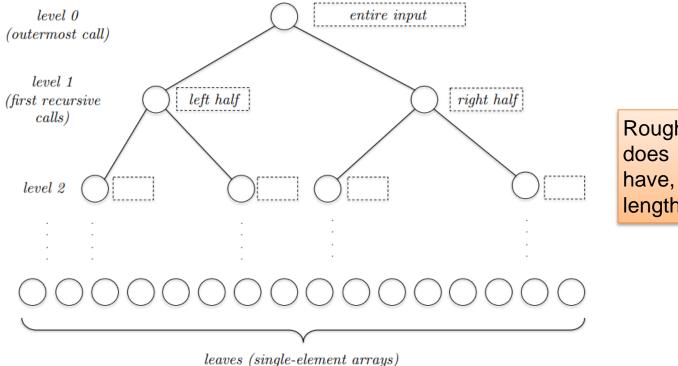
Lemma 1.1 (Running Time of Merge) For every pair of sorted input arrays C, D of length n/2, the Merge subroutine performs at most 6n operations.

Theorem 1.2:

(Running Time of MergeSort) For every input array of length n >=1, the MergeSort algorithm performs at most : 6n log₂ n + 6n



Proof: Running Time of MergeSort) For every input array of length $n \ge 1$, the MergeSort algorithm performs at most :6n log₂ n + 6n

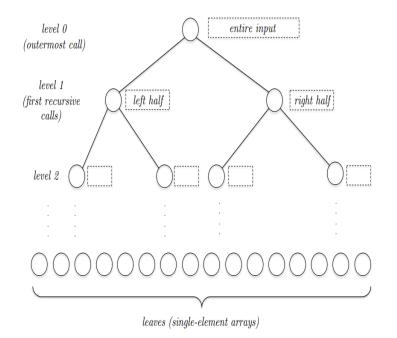


Roughly how many levels does this recursion tree have, as a function of the length n of the input array?

Quiz 1.2

What is the pattern? Fill in the blanks in the following statement: at each level j = 0, 1, 2, ... of the recursion tree, there are [blank] subproblems, each operating on a subarray of length [blank].

- a) 2^j and 2^j , respectively
- b) $n/2^j$ and $n/2^j$, respectively
- c) 2^j and $n/2^j$, respectively
- d) $n/2^j$ and 2^j , respectively



The total work done by level-j recursive call: # of level-j subproblems * work per level-j subproblem = $2^{j} * 6n/2^{j}$ =6n

Using our bound of 6n operations per level, we can bound the total number of operations by number of levels * work per level = $(\log_2 n+1)$ *6n = $6n \log_2 n + 6n$

Guiding Principles for the Analysis of Algorithms

- Principle #1: Worst-Case Analysis
 - This type of analysis is called worst-case analysis, since it gives a running time bound that is valid even for the "worst" inputs.
 - Worst-case analysis, in which you make absolutely no assumptions about the input, is particularly appropriate for general purpose subroutines designed to work well across a range of application domains
- Principle #2: Big-Picture Analysis
 - This principle states that we should not worry unduly about small constant factors or lower-order terms in running time bounds
- Principle #3: Asymptotic Analysis
 - Focus on the rate of growth of an algorithm's running time, as the input size n grows large.
- What Is a "Fast" Algorithm?
 - A "fast algorithm" is an algorithm whose worst-case running time grows slowly with the input size.

