
Introduction

COMP215: Design & Analysis of
Algorithms

Today

• Merge Sort: The Algorithm

• Merge Sort: The Analysis

• Guiding Principles for the Analysis of

Algorithms

MergeSort: The Algorithm

• Why begin with MergeSort?

– Oldie but a goodie, it is the standard sorting algorithm in a
number of programming libraries.

– Canonical divide-and-conquer algorithm.

– Our running time analysis of MergeSort exposes a number
of more general guiding principles.

– Warm-up for the master method.

MergeSort: The Algorithm

• Sorting:

Problem: Sorting

Input: An array of n numbers, in arbitrary order.

Output: An array of the same numbers, sorted from

smallest to largest.

Some Algorithms:

– Insertion Sort

– Selection Sort

– Bubble Sort

MergeSort: The Algorithm

– Insertion Sort

– Selection Sort

– Bubble Sort

MergeSort: The Algorithm

• Example:

MergeSort: The Algorithm

MergeSort: The Analysis

• Running Time of Merge:

Lemma 1.1 (Running Time of Merge) For every pair of

sorted input arrays C, D of length n/2, the Merge subroutine

performs at most 6n operations.

MergeSort: The Analysis

Theorem 1.2:

(Running Time of MergeSort) For every input array

of length n >=1, the MergeSort algorithm performs

at most :

6n log2 n + 6n

MergeSort: The Analysis

MergeSort: The Analysis

Proof: Running Time of MergeSort) For every input array of length n >=1, the

MergeSort algorithm performs at most :6n log2 n + 6n

Roughly how many levels

does this recursion tree

have, as a function of the

length n of the input array?

MergeSort: The Analysis

The total work done by level-j recursive call:

of level-j subproblems * work per level-j subproblem

= 2j * 6n/2j

=6n

MergeSort: The Analysis

Using our bound of 6n operations per level, we can bound the

total number of operations by

number of levels * work per level

= (log2 n+1) *6n

= 6n log2 n + 6n

Guiding Principles for the Analysis of

Algorithms

• Principle #1: Worst-Case Analysis

– This type of analysis is called worst-case analysis, since it gives a
running time bound that is valid even for the “worst” inputs.

– Worst-case analysis, in which you make absolutely no assumptions
about the input, is particularly appropriate for general purpose
subroutines designed to work well across a range of application domains

• Principle #2: Big-Picture Analysis

– This principle states that we should not worry unduly about small
constant factors or lower-order terms in running time bounds

• Principle #3: Asymptotic Analysis

– Focus on the rate of growth of an algorithm’s running time, as the input
size n grows large.

• What Is a “Fast” Algorithm?

– A “fast algorithm” is an algorithm whose worst-case running time grows
slowly with the input size.

	Slide 1: Introduction
	Slide 2: Today
	Slide 3: MergeSort: The Algorithm
	Slide 4: MergeSort: The Algorithm
	Slide 5: MergeSort: The Algorithm
	Slide 6: MergeSort: The Algorithm
	Slide 7: MergeSort: The Algorithm
	Slide 8: MergeSort: The Analysis
	Slide 9: MergeSort: The Analysis
	Slide 10: MergeSort: The Analysis
	Slide 11: MergeSort: The Analysis
	Slide 12: MergeSort: The Analysis
	Slide 13: MergeSort: The Analysis
	Slide 14: Guiding Principles for the Analysis of Algorithms

