

Introduction

COMP215: Design & Analysis of Algorithms

Today

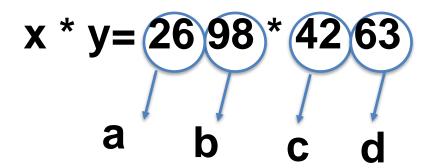
- Karatsuba Multiplication
- Work on <u>HW A</u>
- Start on DQ #1

 We will start by Recursive Algorithm for integer multiplication then we will move to Karatsuba Multiplication.

The algorithm design space is surprisingly rich

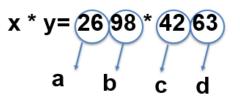
Integer Multiplication

- Lets go back to our example:
- x= 2698, y= 4263



Integer Multiplication

• To calculate x*y:



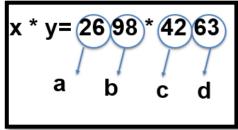
- 1. Compute a * c = 26 * 42= 1,092
- 2. Compute b * d = 98 * 63= 6,174

3. Compute
$$(a + b) * (c + d) = (26+98) * (42+63)$$

= 13,020

4. Subtract the results of the first two steps from the result of the third step: 13,020 - 1,092 - 6,174

Integer Multiplication- A Recursive Algorithm



 In general, a number x with an even number n of digits can be expressed in terms of two n/2-digit numbers, its first half a and second half b:

 $x = 10^{n/2} * a + b.$

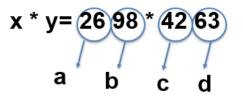
• Similarly, we can write

 $y = 10^{n/2} * c + d.$

• To compute the product of x and y, let's use the two expressions above and multiply out:

 $x * y = (10^{n/2} * a + b) * (10^{n/2} * c + d) = 10^{n} * (a * c) + 10^{n/2} * (a * d + b * c) + b * d$

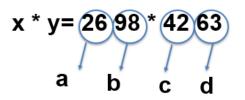
Integer Multiplication



• x *y = 10ⁿ *(a * c) + 10^{n/2} *(a * d + b * c) + b * d

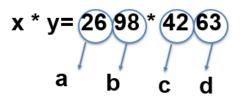
${\tt RecIntMult}$

Input: two *n*-digit positive integers x and y. **Output:** the product $x \cdot y$. **Assumption:** n is a power of 2.



- Karatsuba multiplication is an optimized version of the RecIntMult algorithm.
- We again start from the expansion of x y in terms of a, b, c, and d:

 $x * y = 10^{n} * (a * c) + 10^{n/2} * (a * d + b * c) + b * d$



 $=a^{*}c + a^{*}d + b^{*}c + b^{*}d$

 $x * y = 10^{n} * (a * c) + 10^{n/2} * (a * d + b * c) + b * d$

Compute x*y using Karatsuba Multiplication

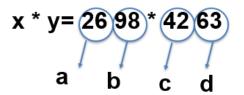
Step 1: Recursively compute **a** * **c**.

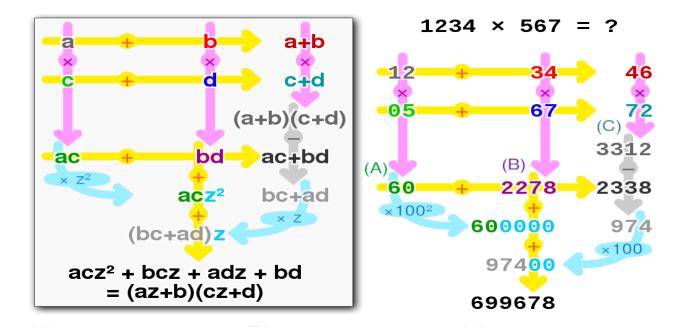
Step 2: Recursively compute **b** * **d**.

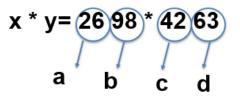
Step 3: Instead of recursively computing $a^*d c$, we recursively compute the product of a + b and c + d. Compute a + b and c + d using grade-school addition and recursively compute $(a + b)^* (c + d)$ $(a + b)^* (c + d) - a^*c - b^*d = a^*d + b^*c$

Step 4: Subtract the results of the first two steps from the result of the third step to obtain a * d + b * c.

Step 5: Compute (x*y) by adding up the results of steps 1, 2, and 4, after adding n trailing zeroes to the answer in step 1 and n/2 trailing zeroes to the answer in step 4.







Karatsuba **Input:** two *n*-digit positive integers x and y. **Output:** the product $x \cdot y$. **Assumption:** *n* is a power of 2. if n = 1 then // base case compute $x \cdot y$ in one step and return the result // recursive case else a, b := first and second halves of xc, d := first and second halves of y compute p := a + b and q := c + d using grade-school addition recursively compute $ac := a \cdot c, bd := b \cdot d$, and $pq := p \cdot q$ compute adbc := pq - ac - bd using grade-school addition compute $10^n \cdot ac + 10^{n/2} \cdot adbc + bd$ using grade-school addition and return the result

