

Introduction

COMP215: Design \& Analysis of Algorithms

Today

- Karatsuba Multiplication
- Work on HW A
- Start on DQ \#1

Karatsuba Multiplication

- We will start by Recursive Algorithm for integer multiplication then we will move to Karatsulba Multiplication.

The algorithm design space is surprisingly rich

Integer Multiplication

- Lets go back to our example:
- $\mathrm{x}=2698, \mathrm{y}=4263$

$$
x^{*} y=2698{ }_{b}^{*}
$$

Integer Multiplication

- To calculate $x^{*} y$:

1. Compute a * $c=26 * 42=1,092$
2. Compute $\mathrm{b}^{*} \mathrm{~d}=98{ }^{*} 63=6,174$
3. Compute $(\mathrm{a}+\mathrm{b})$ * $(\mathrm{c}+\mathrm{d})=(26+98)$ * $(42+63)$

$$
=13,020
$$

4. Subtract the results of the first two steps from the result of the third step: 13,020-1,092-6,174

$$
=5,754
$$

5. Compute 10^{4} * $1,092+10^{2}$ * $5,754+6,174=$ 11,501,574

Integer Multiplication- A Recursive Algorithm
 $$
x^{*} \mathrm{y}=2698 * 4
$$

- In general, a number x with an even number n of digits can be expressed in terms of two $\mathbf{n} / \mathbf{2}$-digit numbers, its first half a and second half b :

$$
x=10^{n / 2} \text { * } a+b .
$$

- Similarly, we can write

$$
y=10^{\mathrm{n} / 2} \mathrm{c} c+\mathrm{d} .
$$

- To compute the product of x and y, let's use the two expressions above and multiply out:

$$
\begin{gathered}
x^{*} y=\left(10^{n / 2 *} a+b\right)^{*}\left(10^{n / 2 *} c+d\right)=10^{n *}\left(a^{*} c\right)+10^{n / 2 *}\left(a^{*} d\right. \\
\left.+b^{*} c\right)+b * d
\end{gathered}
$$

Integer Multiplication

- x * $y=10^{n}$ * $\left(a^{*} c\right)+10^{n / 2}$ * $\left(a^{*} d+b * c\right)+b^{*} d$

RecIntMult

Input: two n-digit positive integers x and y.
Output: the product $x \cdot y$.
Assumption: n is a power of 2 .
if $n=1$ then
// base case
compute $x \cdot y$ in one step and return the result
else // recursive case
$a, b:=$ first and second halves of x
$c, d:=$ first and second halves of y
recursively compute $a c:=a \cdot c, a d:=a \cdot d$, $b c:=b \cdot c$, and $b d:=b \cdot d$
compute $10^{n} \cdot a c+10^{n / 2} \cdot(a d+b c)+b d$ using grade-school addition and return the result

Karatsuba Multiplication

- Karatsuba multiplication is an optimized version of the RecIntMult algorithm.
- We again start from the expansion of $x \cdot y$ in terms of a, b, c, and d:

$$
x^{*} y=10^{n} *\left(a^{*} c\right)+10^{n / 2} *\left(a^{*} d+b^{*} c\right)+b^{*} d
$$

Karatsuba Multiplication

$$
x^{*} y=10^{n}\left(a^{*} c\right)+10^{n / 2 *}\left(a^{*} d+b^{*} c\right)+b^{*} d
$$

Compute $x^{*} y$ using Karatsuba Multiplication

Step 1: Recursively compute a * c.
Step 2: Recursively compute b*d.

$$
=a^{*} c+a^{*} d+b^{*} c+b^{*} d
$$

Step 3: Instead of recursively computing a*d recursively compute the product of $\mathrm{a}+\mathrm{b}$ and +d . Compute a $+b$ and $c+d$ using grade-school addition and recursively compute $(\mathrm{a}+\mathrm{b})$ * $(\mathrm{c}+\mathrm{d})$

$$
(a+b)^{*}(c+d)-\mathbf{a}^{*} \mathbf{c}-\mathbf{b}^{*} \mathbf{d}=\mathbf{a}^{*} \mathbf{d}+\mathbf{b}^{*} \mathbf{c}
$$

Step 4: Subtract the results of the first two steps from the result of the third step to obtain $\mathrm{a}^{*} \mathrm{~d}+\mathrm{b}$ * \mathbf{c}.
Step 5: Compute ($x^{*} y$) by adding up the results of steps 1,2 , and 4 , after adding n trailing zeroes to the answer in step 1 and $\mathrm{n} / 2$ trailing zeroes to the answer in step 4.

Karatsuba Multiplication

Karatsuba Multiplication

Karatsuba

Input: two n-digit positive integers x and y.
Output: the product $x \cdot y$.
Assumption: n is a power of 2 .
if $n=1$ then
// base case
compute $x \cdot y$ in one step and return the result
else // recursive case
$a, b:=$ first and second halves of x
$c, d:=$ first and second halves of y
compute $p:=a+b$ and $q:=c+d$ using grade-school addition
recursively compute $a c:=a \cdot c, b d:=b \cdot d$, and $p q:=p \cdot q$
compute $a d b c:=p q-a c-b d$ using grade-school addition
compute $10^{n} \cdot a c+10^{n / 2} \cdot a d b c+b d$ using grade-school addition and return the result

