KALAMAZOO

Divide-and-Conquer

COMP215: Design & Analysis of
Algorithms

KALAMAZOO
COLLEGE

Today

* The Divide-and-Conquer Paradigm
« Counting Inversions

KALAMAZOO
COLLEGE

The Divide-and-Conquer Paradigm

Conquer «——
Divide —— Problem

The Divide-and-Conquer Paradigm

1. Divide the input into smaller subproblems. Sub-Problem Sub-Problem

2. Conquer the subproblems recursively. / \ // \

. Combine the solutions for the subproblems into a
solution for the original problem.

S

A

Sub-Sub-Problem Sub-Sub-Problem Sub-Sub-Problem Sub-Sub-Problem

l

Solve Solve Solve Solve

KALAMAZOO
COLLEGE

Counting Inversions

* Aninversion of an array is a pair of elements that are “out
of order,” meaning that the element that occurs earlier in
the array Is bigger than the one that occurs later.

I 2 4 3 3

—_—

Inversion

Problem: Counting Inversions

Input: An array A ol distinct integers.

Output: The number of inversions of A—the number of

pairs (i, j) of array indices with ¢ < j and Ali| > A[j].

KALAMAZOO
COLLEGE

Counting Inversions (Example)

« How many inversions does this array have?

1 3 5 2 4 6

¢ (3,2),(5,2),(5,4)=> 3

 How many inversions does this array have?

S 4 2 1 3 7 6

* (54), (5,2, (5,1),(53), 4,2),(4,1),(4,3), (2,1),(7,6) => 9

KALAMAZOO
COLLEGE

Counting Inversions (Example)

S
| 6 |
e
-t
| 6 |
+——=+

| 5 |
| 4 |

=t =t
| 4 |

T T
R T s 2

| 2 |
et At

| 3 |
| 5 |

| 2 |
tmet F—e—t

et -t
-t +-Z-+
| 3 |

et F———t

S —
| 1 |
e
+-1—+
| 1 |
T

COLLEGE

o
:
:

Counting Inversions

Quiz 3.1

What is the largest-possible number of inversions a 6-element
array can have?

a) 15

ol

KALAMAZOO
COLLEGE

Counting Inversions (Collaborative Filtering)

« One reason to count Inversions is to compute a
numerical similarity measure that quantifies how close
two ranked lists are to each other

« Example:

e suppose | ask you and a friend to rank, from favorite to
least favorite, ten movies that you have both seen. Are
your tastes “similar” or “different?”

KALAMAZOO
COLLEGE

Counting Inversions (Collaborative
Filtering)

* How can we measure that?

Your favorite 1121314l 5l 6! 7| 8| 9] 10
movie

Your Friend 5/2l6l1! 3! 4! 9| 7! 8! 10
Ranking

* Notes:
— If your rankings are identical:
« This array will be sorted and have no inversions.
— The more inversions the array has:

- The more pairs of movies on which you disagree about their
relative merits, and the more different your preferences.

KALAMAZOO
COLLEGE

Counting Inversions

 Why do | need the similarity measure between
rankings ? To do collaborative filtering

* Collaborative filtering is a technique that can filter
out items that a user might like on the basis of
reactions by similar users. Which can be used then
to generate recommendations Sk "Tod

KALAMAZOO
COLLEGE

Counting Inversions (Algorithm)

« Suggestion for the ?
— Exhaustive Search:

Input: array A of n distinct integers.
Output: the number of inversions of A.

numlInv := 0
fori:=1ton—1do
for j ;=141 ton do
if Ali] > A[j] then
numliInv := numliInv + 1 5
return numlnuv O(n)

Can we do better?

KALAMAZOO
COLLEGE

Counting Inversions (Divide-and-conguer)

« The “divide” step will be exactly as in the MergeSort algorithm,
— with one recursive call for the left half of the array
— one for the right half.
« To understand more, let’s classify the inversions (i,) of an array A
of length n into one of three types:

— left inversion: an inversion with i, j both in the first half of the array
(i.e.,,i,j=n/2);

— right inversion: an inversion with i, j both in the second half of the
array (i.e., 1,j>n/2);

— split inversion: an inversion with i in the left half and j in the right half
(i.e., i = n/2 <j).

KALAMAZOO
COLLEGE

Counting Inversions- High-Level Algorithm

CountInv

Input: array A of n distinct integers.
Output: the number of inversions of A.

if n=0o0orn=1 then // base cases
return 0
else

leftInv := CountInv(first half of A)
rightInv := CountInv(second half of A)
splitInv := CountSplitInv(A)

return leftInv + rightInv + splitInv

KALAMAZOO
COLLEGE

Counting Inversions- Using MergeSort

Sort-and-Countlnv

Input: array A of n distinct integers.
Output: sorted array B with the same integers, and
the number of inversions of A.

if n=0o0rn=1then // base cases
return (A, 0)

else
(C,leftInv) := Sort-and-CountInv(first half of A)
(D, rightInv) :=

Sort-and-CountInv(second half of A)
(B, splitInv) := Merge-and-CountSplitInv(C, D)
return (B.leftInv + rightInv + splitInv)

KALAMAZOO
COLLEGE

Counting Inversions- Using MergeSort

Merge

Input: sorted arrays C' and D (length n/2 each).
Output: sorted array B (length n).
Simplifying assumption: n is even.

1 =1,7:=1
for k:=1 ton do
if C[i] < D[j] then
Blk]:=Cli],i:=i+1
else // Dlj] < C[i]
Blkl|:=Dl[j],7:=7+1

Merge-and-CountSplitInv

Input: sorted arrays C and D (length n/2 each).

Output: sorted array B (length n) and the number of
split inversions.

Simplifying assumption: n is even.

1:=1,7:=1, splitInv:=0
for k:=1tondo
if C[i] < D[j] then
Blk] :=Cli],i:=1i+1
else // Dlj] < Ci]
Blk|:=Dlj],j:=7+1
splitInv := splitInv + (§ —i+ 1)
e —
left in C'
return (B, splitInv)

KALAMAZOO
COLLEGE

	Slide 1: Divide-and-Conquer
	Slide 2: Today
	Slide 3: The Divide-and-Conquer Paradigm
	Slide 4: Counting Inversions
	Slide 5: Counting Inversions (Example)
	Slide 6: Counting Inversions (Example)
	Slide 7: Counting Inversions
	Slide 8: Counting Inversions (Collaborative Filtering)
	Slide 9: Counting Inversions (Collaborative Filtering)
	Slide 10: Counting Inversions
	Slide 11: Counting Inversions (Algorithm)
	Slide 12: Counting Inversions (Divide-and-conguer)
	Slide 13: Counting Inversions- High-Level Algorithm
	Slide 14: Counting Inversions- Using MergeSort
	Slide 15: Counting Inversions- Using MergeSort

