
Divide-and-Conquer

COMP215: Design & Analysis of 
Algorithms



Today

• The Divide-and-Conquer Paradigm

• Counting Inversions



The Divide-and-Conquer Paradigm



Counting Inversions
• An inversion of an array is a pair of elements that are “out 

of order,” meaning that the element that occurs earlier in 

the array is bigger than the one that occurs later.



Counting Inversions (Example)

• How many inversions does this array have?

• (3,2), (5,2),(5,4) ➔ 3

• How many inversions does this array have?

• (5,4), (5,2), (5,1),(5,3), (4,2),(4,1),(4,3), (2,1),(7,6) ➔ 9

5 4 2 1 3 7 6

1 3 5 2 4 6



Counting Inversions (Example)



Counting Inversions



Counting Inversions (Collaborative Filtering)

• One reason to count Inversions is to compute a 

numerical similarity measure that quantifies how close 

two ranked lists are to each other

• Example:

• suppose I ask you and a friend to rank, from favorite to 

least favorite, ten movies that you have both seen. Are 

your tastes “similar” or “different?”



Counting Inversions (Collaborative 

Filtering)

• How can we measure that?

• Notes:

– If your rankings are identical:

• This array will be sorted and have no inversions. 

– The more inversions the array has:

• The more pairs of movies on which you disagree about their 
relative merits, and the more different your preferences.

Your favorite 

movie
1 2 3 4 5 6 7 8 9 10

Your Friend 

Ranking
5 2 6 1 3 4 9 7 8 10



Counting Inversions

• Why do I need the similarity measure between 
rankings ? To do collaborative filtering

• Collaborative filtering is a technique that can filter 
out items that a user might like on the basis of 
reactions by similar users. Which can be used then 
to generate recommendations



Counting Inversions (Algorithm)

• Suggestion for the ?

– Exhaustive Search:

O(n2)

Can we do better?



Counting Inversions (Divide-and-conguer)

• The “divide” step will be exactly as in the MergeSort algorithm, 

– with one recursive call for the left half of the array

– one for the right half. 

• To understand more, let’s classify the inversions (i, j) of an array A 

of length n into one of three types:

– left inversion: an inversion with i, j both in the first half of the array 

(i.e., i, j ≤ n/2 );

– right inversion: an inversion with i, j both in the second half of the 

array (i.e., i, j > n/2 ); 

– split inversion: an inversion with i in the left half and j in the right half 

(i.e., i ≤ n/2 < j).



Counting Inversions- High-Level Algorithm



Counting Inversions- Using MergeSort



Counting Inversions- Using MergeSort

•

• ➔


	Slide 1: Divide-and-Conquer
	Slide 2: Today
	Slide 3: The Divide-and-Conquer Paradigm 
	Slide 4: Counting Inversions
	Slide 5: Counting Inversions (Example)
	Slide 6: Counting Inversions (Example)
	Slide 7: Counting Inversions
	Slide 8: Counting Inversions (Collaborative Filtering)
	Slide 9: Counting Inversions (Collaborative Filtering)
	Slide 10: Counting Inversions
	Slide 11: Counting Inversions (Algorithm)
	Slide 12: Counting Inversions (Divide-and-conguer)
	Slide 13: Counting Inversions- High-Level Algorithm
	Slide 14: Counting Inversions- Using MergeSort
	Slide 15: Counting Inversions- Using MergeSort

