K

KALAMAZOO

Breadth-first search

COMP215: Design & Analysis of
Algorithms

KALAMAZOO
COLLEGE

Today " " Graph |
Algorithms

 Breadth-first search
 Shortest Paths
* Computing Connected

KALAMAZOO
COLLEGE

Breadth-first search

« Breadth-first search explores the vertices of a graph in layers, in
order of increasing distance from the starting vertex.

« Layer 0 contains the starting vertex s and nothing else.

« Layer 1 is the set of vertices that are one hop away from s—that is,
s’s neighbors

* In general, the vertices in a layer | are those that neighbor a vertex in
layer i - 1 and that do not already belong to one of the layers O, 1,
2,..,0—1.

KALAMAZOO
COLLEGE

Breadth
-first
search

KALAMAZOO
COLLEGE

Breadth
-first
search

1
2
3
4

@ 3 o o

BFS

Input: graph G = (V, E) in adjacency-list
representation, and a vertex s € V.

Postcondition: a vertex is reachable from s if and
only if it is marked as “explored.”

mark s as explored, all other vertices as unexplored
() := a queue data structure, initialized with s
while) is not empty do
remove the vertex from the front of @), call it v
for each edge (v, w) in v’s adjacency list do
if w is unexplored then

mark w as explored
add w to the end of @

KALAMAZOO
COLLEGE

Breadth-first search

the frontier - the frontier

front of queue already removed front of queue already removed

N

(o[[]a]x

b]a[x]

state of the queue Q

state of the queue Q

layer 1

KALAMAZOO
COLLEGE

Example

KALAMAZOO
COLLEGE

Correctness and Running Time

Theorem 8.2 (Properties of BFS) For every undirected or di-
rected graph G = (V, E) in adjacency-list representation and for every
starting vertex s € V:

(a) At the conclusion of BFS, a vertex v € V' is marked as explored

if and only if there is a path from s to v in G.

(b) The running time of BFS is O(m + n), where m = |E| and
n=|V|.

(¢) The running time of lines 2-8 of BFS is
O(mgs + ng),

where mg and ng denote the number of edges and vertices, re-

spectively, reachable from s in G.

KALAMAZOO
COLLEGE

Shortest Paths

 What is unigue about BFS is that, with just a couple
extra lines of code, it efficiently computes

Problem Definition

In a graph G, we use the notation dist(v, w) for the fewest number of
edges in a path from v to w (or +o0o, if G contains no path from v
to w).]'c’

Problem: Shortest Paths (Unit Edge Lengths)

Input: An undirected or directed graph G = (V, F), and
a starting vertex s € V.

Output: dist(s,v) for every vertex v € V.16

KALAMAZOO
COLLEGE

Shortest Paths

the frontier

= o l(e)=+=
Ka)=1 \\/ (e)=+
\

front of queue

AN

1
2
3
4
5

6
7
8
9

10

Augmented-BFS

Input: graph G = (V, E) in adjacency-list
representation, and a vertex s € V.

Postcondition: for every vertex v € V, the value [(v)
equals the true shortest-path distance dist(s,v).

mark s as explored, all other vertices as unexplored
I(s) :=0, l(v) := +oc for every v # s
() := a queue data structure, initialized with s
while @ is not empty do
remove the vertex from the front of @), call it v
for each edge (v,w) in v’s adjacency list do
if w is unexplored then
mark w as explored
lw):=1(v)+1
add w to the end of @)

already removed

<

Ld]e

AL

state of the queue Q

KALAMAZOO
COLLEGE

Example

KALAMAZOO
COLLEGE

Shortest Paths

Theorem 8.3 (Properties of Augmented-BFS) For every undi-
rected or directed graph G = (V, E) in adjacency-list representation
and for every starting vertex s € V:

(a) At the conclusion of Augmented-BFS, for every vertexr v € V,

the value of l(v) equals the length dist(s,v) of a shortest path
from s to v in G (or 400, if no such path exists).

(b) The running time of Augmented-BFS is O(m+n), where m = |E|
and n = |V/|.

KALAMAZOO
COLLEGE

Computing Connected Components

* An undirected graph G = (V,E) naturally falls into
“pieces,” which are called connected components.

* A connected component is a maximal subset S ¢ V
of vertices such that there is a path from any vertex
In S to any other vertex in S.

 We will use breadth-first search to compute the
connected components of a graph in linear time

KALAMAZOO
COLLEGE

Computing Connected Components

L]

KALAMAZOO
COLLEGE

Computing Connected Components

Problem: Undirected Connected Components

Input: An undirected graph G = (V, E).

Goal: Identify the connected components of G.

Quiz 8.2

Consider an undirected graph with n vertices and m edges.
What are the minimum and maximum number of connected
components that the graph could have, respectively?

a) land n —1
b) 1 and n

¢) 1 and max{m,n}

d) 2 and max{m,n}

KALAMAZOO
COLLEGE

Computing Connected Components

UCC
Input: undirected graph G = (V, F') in adjacency-list
representation, with V- = {1,2,3,...,n}.
Postcondition: for every w,v € V, cc(u) = cc(v) if

and only if «, v are in the same connected component.

mark all vertices as unexplored

numCC := 0

for : := 1 to n do // try all vertices
if ¢ is unexplored then // avoid redundancy
numCC' = numCC + 1 // mew component

// call BFS starting at ¢ (lines 2-8)
) := a queue data structure, initialized with 2

while () is not empty do
remove the vertex from the front of @, call it »

cc(v) := numCC
for each (v, w) in v’s adjacency list do
if w is unexplored then
mark w as explored
add w to the end of @

KALAMAZOO

COLLEGE

Computing Connected Components

KALAMAZOO
COLLEGE

Computing Connected Components

8.3.5 Correctness and Running Time

The UCC algorithm correctly computes the connected components of
an undirected graph, and does so in linear time.

Theorem 8.4 (Properties of UCC) For every wundirected graph
G = (V, E) in adjacency-list representation.:

(a) At the conclusion of UCC, for every pair u,v of vertices, cc(u) =
cc(v) if and only if u and v belong to the same connected com-
ponent of G.

(b) The running time of UCC is O(m + n), where m = |E| and
n=|V]|.

KALAMAZOO
COLLEGE

	Slide 1: Breadth-first search
	Slide 2: Today
	Slide 3: Breadth-first search
	Slide 4: Breadth-first search
	Slide 5: Breadth-first search
	Slide 6: Breadth-first search
	Slide 7: Example
	Slide 8: Correctness and Running Time
	Slide 9: Shortest Paths
	Slide 10: Shortest Paths
	Slide 11: Example
	Slide 12: Shortest Paths
	Slide 13: Computing Connected Components
	Slide 14: Computing Connected Components
	Slide 15: Computing Connected Components
	Slide 16: Computing Connected Components
	Slide 17: Computing Connected Components
	Slide 18: Computing Connected Components

