

Breadth-first search

COMP215: Design \& Analysis of Algorithms

Today

来
 Graph Algorithms

- Breadth-first search
- Shortest Paths
- Computing Connected

Breadth-first search

- Breadth-first search explores the vertices of a graph in layers, in order of increasing distance from the starting vertex.
- Layer 0 contains the starting vertex s and nothing else.
- Layer 1 is the set of vertices that are one hop away from s-that is, s's neighbors
- In general, the vertices in a layer i are those that neighbor a vertex in layer i-1 and that do not already belong to one of the layers 0,1 , 2,.., i-1.

Breadth -first search

KALAMAZOO]

BFS

Breadth -first

 searchInput: graph $G=(V, E)$ in adjacency-list representation, and a vertex $s \in V$.
Postcondition: a vertex is reachable from s if and only if it is marked as "explored."

1 mark s as explored, all other vertices as unexplored
$2 Q:=$ a queue data structure, initialized with s 3 while Q is not empty do
4 remove the vertex from the front of Q, call it v 5 for each edge (v, w) in v 's adjacency list do
if w is unexplored then mark w as explored add w to the end of Q

Breadth-first search

Example

Correctness and Running Time

Theorem 8.2 (Properties of BFS) For every undirected or directed graph $G=(V, E)$ in adjacency-list representation and for every starting vertex $s \in V$:
(a) At the conclusion of BFS, a vertex $v \in V$ is marked as explored if and only if there is a path from s to v in G.
(b) The running time of BFS is $O(m+n)$, where $m=|E|$ and $n=|V|$.
(c) The running time of lines 2-8 of BFS is

$$
O\left(m_{s}+n_{s}\right),
$$

where m_{s} and n_{s} denote the number of edges and vertices, respectively, reachable from s in G.

Shortest Paths

- What is unique about BFS is that, with just a couple extra lines of code, it efficiently computes shortestpath distances.

Problem Definition

In a graph G, we use the notation $\operatorname{dist}(v, w)$ for the fewest number of edges in a path from v to w (or $+\infty$, if G contains no path from v to $w) .{ }^{15}$

Problem: Shortest Paths (Unit Edge Lengths)

Input: An undirected or directed graph $G=(V, E)$, and
a starting vertex $s \in V$.
Output: $\operatorname{dist}(s, v)$ for every vertex $v \in V .{ }^{16}$

Shortest Paths

Augmented-BFS

Input: graph $G=(V, E)$ in adjacency-list representation, and a vertex $s \in V$.
Postcondition: for every vertex $v \in V$, the value $l(v)$ equals the true shortest-path distance $\operatorname{dist}(s, v)$.

1 mark s as explored, all other vertices as unexplored
$2 l(s):=0, l(v):=+\infty$ for every $v \neq s$
$3 Q$:= a queue data structure, initialized with s
while Q is not empty do
remove the vertex from the front of Q, call it v
for each edge (v, w) in v 's adjacency list do
if w is unexplored then
mark w as explored
$l(w):=l(v)+1$
add w to the end of Q

state of the queue Q

Example

KALAMAZOO]

Shortest Paths

Theorem 8.3 (Properties of Augmented-BFS) For every undirected or directed graph $G=(V, E)$ in adjacency-list representation and for every starting vertex $s \in V$:
(a) At the conclusion of Augmented-BFS, for every vertex $v \in V$, the value of $l(v)$ equals the length dist (s, v) of a shortest path from s to v in G (or $+\infty$, if no such path exists).
(b) The running time of Augmented-BFS is $O(m+n)$, where $m=|E|$ and $n=|V|$.

Computing Connected Components

- An undirected graph $G=(V, E)$ naturally falls into "pieces," which are called connected components.
- A connected component is a maximal subset S \underline{c} V of vertices such that there is a path from any vertex in S to any other vertex in S.
- We will use breadth-first search to compute the connected components of a graph in linear time

Computing Connected Components

Computing Connected Components

Problem: Undirected Connected Components
Input: An undirected graph $G=(V, E)$.
Goal: Identify the connected components of G.

Quiz 8.2

Consider an undirected graph with n vertices and m edges. What are the minimum and maximum number of connected components that the graph could have, respectively?
a) 1 and $n-1$
b) 1 and n
c) 1 and $\max \{m, n\}$
d) 2 and $\max \{m, n\}$

Computing Connected Components

UCC
Input: undirected graph $G=(V, E)$ in adjacency-list representation, with $V=\{1,2,3, \ldots, n\}$.
Postcondition: for every $u, v \in V, c c(u)=c c(v)$ if and only if u, v are in the same connected component.

```
mark all vertices as unexplored
num \(C C:=0\)
for \(i:=1\) to \(n\) do // try all vertices
    if \(i\) is unexplored then \(/ /\) avoid redundancy
        numCC \(:=\) numCC +1 // new component
        // call BFS starting at \(i\) (lines 2-8)
        \(Q:=\) a queue data structure, initialized with \(i\)
        while \(Q\) is not empty do
                remove the vertex from the front of \(Q\), call it \(v\)
        \(c c(v):=n u m C C\)
            for each ( \(v, w\) ) in \(v\) 's adjacency list do
                if \(w\) is unexplored then
                mark \(w\) as explored
                add \(w\) to the end of \(Q\)
```


Computing Connected Components

KALAMAZOO] COLLEGE

Computing Connected Components

8.3.5 Correctness and Running Time

The UCC algorithm correctly computes the connected components of an undirected graph, and does so in linear time.

Theorem 8.4 (Properties of UCC) For every undirected graph $G=(V, E)$ in adjacency-list representation:
(a) At the conclusion of UCC, for every pair u, v of vertices, $c c(u)=$ $c c(v)$ if and only if u and v belong to the same connected component of G.
(b) The running time of UCC is $O(m+n)$, where $m=|E|$ and $n=|V|$.

