

Asymptotic Notation

COMP215: Design \& Analysis of Algorithms

Today

- The Gist
- Big-O Notation
- Examples

Asymptotic Notation

- Asymptotic notation provides the basic vocabulary for discussing the design and analysis of algorithms.
- Asymptotic notation is coarse enough to suppress all the details you want to ignore, details that depend on
- The choice of architecture,
- The choice of programming language,
- The choice of compiler.
- It is useful to make comparisons between different highlevel algorithmic approaches to solving a problem, especially on larger input

Asymptotic Notation

Asymptotic Notation in Seven Word: suppress constant factors and lower-order
 terms
irrelevant for large inputs

Asymptotic Notation - Examples

- Consider first the problem of searching an array for a given integer t. The code just checks each array entry in turn. If it ever finds the integer t it returns true, and if it falls off the end of the array without finding t it returns false.

```
Searching One Array
Input: array \(A\) of \(n\) integers, and an integer \(t\).
Output: Whether or not \(A\) contains \(t\).
```

```
for i:= 1 to n do
    if A[i]=t then
        return TRUE
return FALSE
```

- What is the asymptotic running time of the code for searching one array, as a function of the array length n ?

Asymptotic Notation - Examples

- Suppose we're now given two integer arrays A and B, both of length n , and we want to know whether a target integer t is in either one. Let's again consider the straightforward algorithm, where we just search through A, and if we fail to find t in A, we then search through B. If we don't find t in B either, we return false.
- What is the asymptotic running time of the code for searching Two arrays, as a function of the arrays length n ?

Searching Two Arrays

Input: arrays A and B of n integers each, and an integer t.
Output: Whether or not A or B contains t.

```
for }i:=1\mathrm{ to }n\mathrm{ do
    if A[i]=t then
        return TRUE
for i:= 1 to n do
    if B[i]=t then
        return TRUE
return FALSE
```


Asymptotic Notation - Examples

- Suppose we want to check whether or not two given arrays of length n have a number in common. The simplest solution is to check all possibilities. That is, for each index i into the array A and each index j into the array B, we check if $A[i]$ is the same number as $B[j]$. If it is, we return true. If we exhaust all the possibilities without ever finding equal elements, we can safely return false.
- What is the asymptotic running time of the code for checking for a common element, as a function of the arrays length n ?

Checking for a Common Element
Input: arrays A and B of n integers each.
Output: Whether or not there is an integer t contained in both A and B.

```
for }i:=1\mathrm{ to }n\mathrm{ do
    for j:=1 to }n\mathrm{ do
        if A[i]=B[j] then
        return TRUE
return FALSE
```


Asymptotic Notation - Examples

- Suppose we're looking for duplicate entries in a single array A, rather than in two different arrays.

Checking for Duplicates
Input: array A of n integers.
Output: Whether or not A contains an integer more than once.

```
for i:= 1 to }u\mathrm{ do
    for j:= i+1 to }n\mathrm{ do
        if A[i]=A[j] then
            return TRUE
return FALSE
```

- What is the asymptotic running time of the code for checking for duplicates in one array, as a function of the array length n ?

Big-O Notation

- The formal definition of big-O notation:

Big-O Notation (English Version)
$T(n)=O(f(n))$ if and only if $T(n)$ is eventually bounded above by a constant multiple of $f(n)$

Big-O Notation (Mathematical Version)
$T(n)=O(f(n))$ if and only if there exist positive constants c and n_{0} such that $\mathrm{T}(\mathrm{n})<=\mathrm{c} \cdot \mathrm{f}(\mathrm{n})$

$$
\begin{equation*}
\text { for all } n>=n_{0} \text {. } \tag{2.1}
\end{equation*}
$$

Big-O Notation

- If you want to prove that $T(n)=O(f(n))$, then your task is to choose the constants c and n_{0} so that (2.1) holds whenever $n>=n_{0}$.
- OR:
- If $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{f}(\mathrm{n})$), then there are constants c and n_{0} such that (2.1) holds for all $\mathrm{n}>=\mathrm{n}_{0}$

Big-O Notation (Examples)

- Degree-k Polynomials are $O\left(\mathrm{n}^{k}\right)$
- Degree-k Polynomials Are Not O($\left.\mathrm{n}^{k-1}\right)$

Big-O Notation (Examples)

1. Degree-k Polynomials are $O\left(n^{k}\right)$

- If $T(n)$ is a polynomial with some degree k, then $T(n)=O\left(n^{k}\right)$. How?

$$
T(n)=a_{k} n^{k}+\cdots a_{1} n+a_{0},
$$

where $k \geq 0$ is a nonnegative integer and the a_{i} 's are real numbers (positive or negative). Then $T(n)=O\left(n^{k}\right)$.

- Proposition 2.1 says that with a polynomial, in big-O notation, all you need to worry about is the highest degree that appears in the polynomial. Thus, big-O notation really is suppressing constant factors and lower-order terms. Prove?

Big-O Notation (Examples)

- Find c and n_{0}.

1. Try $n_{0}=1$ and c equal to the sum of absolute values of the coefficients: c $=\left|a_{k}\right|+\cdots+\left|a_{1}\right|+\left|a_{0}\right|$.
2. We now need to show that these choices of constants satisfy the definition, meaning that $T(n)<=c^{*} n^{k}$ for all n $>=n_{0}=1$.
3. To verify this inequality, fix an arbitrary positive integer n $\mathrm{n} 0=1$. We need a sequence of upper bounds on $T(n)$ (for coefficients and power of n), culminating in an upper bound of $\mathrm{c} \cdot \mathrm{nk}$. First let's apply the definition of $\mathrm{T}(\mathrm{n})$:

$$
T(n)=a_{k} n^{k}+\cdots a_{1} n+a_{0}
$$

Big-O Notation (Examples)

4. For coefficients, if we take the absolute value of each coefficient ai on the right-hand side, the expression only becomes larger

$$
T(n) \leq\left|a_{k}\right| n^{k}+\cdots+\left|a_{1}\right| n+\left|a_{0}\right| .
$$

5. For power of $\mathrm{n}, \mathrm{n}^{\mathrm{k}}$ is only bigger than n^{i} for every i in $\{0$, $1,2, \ldots, k\}$
6. Since $\left|a_{i}\right|$ is nonnegative, $\left|a_{i}\right| n^{k}$ is only bigger than $\left|a_{i}\right| n^{i}$. This means that

$$
T(n) \leq\left|a_{k}\right| n^{k}+\cdots+\left|a_{1}\right| n^{k}+\left|a_{0}\right| n^{k}=\underbrace{\left(\left|a_{k}\right|+\cdots+\left|a_{1}\right|+\left|a_{0}\right|\right)}_{=c} \cdot n^{k} .
$$

Big-O Notation (Examples)

- Degree-k Polynomials Are Not O(n $\left.{ }^{k-1}\right)$
- Proposition 2.2 Let $k 1$ be a positive integer and define $T(n)$
$=\mathrm{n}^{\mathrm{k}}$. Then $\mathrm{T}(\mathrm{n})$ is not $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}-1}\right)$.
- Proof by contradiction:
- Assume that n^{k} is in fact $O\left(n^{k-1}\right)$, for all $n>n_{0}$
- That is, there are positive constants c and n_{0} such that $\mathbf{n}^{k}<=c \cdot n^{k-1}$
- Cancel $\mathrm{n}^{\mathrm{k}-1}$ from both sides of this inequality to derive $\mathbf{n} \leq=\mathbf{C}$, for all $n>n_{0}$

False statement

Big-O Notation

- Practice:
- Arrange the following functions in order of increasing growth rate, with $g(n)$ following $f(n)$ in your list if and only if $f(n)=O(g(n))$.
a) $2^{\log _{2} n}$
b) $2^{2^{\log _{2} n}}$
c) $n^{5 / 2}$
d) $2^{n^{2}}$
e) $n^{2} \log _{2} n$

Big-Omega and Big-Theta Notation

- Big-O is analogous to "less than or equal to (\leq),"
- Big-omega is analogous to "greater than or equal(\geq)
- Big-theta is "equal to (=),"

KALAMAZOO]

Big-Omega

Big-Omega Notation (Mathematical Version) $T(n)=\Omega(f(n))$ if and only if there exist positive constants c and n_{0} such that

$$
T(n) \geq c \cdot f(n)
$$

for all $n \geq n_{0}$.

Big-Theta

Big-Theta Notation (Mathematical Version)

$T(n)=\Theta(f(n))$ if and only if there exist positive constants c_{1}, c_{2}, and n_{0} such that

$$
c_{1} \cdot f(n) \leq T(n) \leq c_{2} \cdot f(n)
$$

for all $n \geq n_{0}$.

Asymptotic Notation

Big Oh

Omega

Theta

Asymptotic Notation

Quiz 2.5

Let $T(n)=\frac{1}{2} n^{2}+3 n$. Which of the following statements are true? (There might be more than one correct answer.)
a) $T(n)=O(n)$
b) $T(n)=\Omega(n)$
c) $T(n)=\Theta\left(n^{2}\right)$
d) $T(n)=O\left(n^{3}\right)$

Asymptotic Notation

- True or False?

$$
\text { If } f(n)=O(g(n)) \text { and } g(n)=O(h(n)) \text {, then } h(n)=\Omega(f(n))
$$

If $f(n)=O(g(n))$ and $g(n)=O(f(n))$ then $f(n)=g(n)$

