
Asymptotic Notation

COMP215: Design & Analysis of
Algorithms

Today

• The Gist

• Big-O Notation

• Examples

Asymptotic Notation

• Asymptotic notation provides the basic vocabulary for discussing the design

and analysis of algorithms.

• Asymptotic notation is coarse enough to suppress all the details you want to

ignore, details that depend on

– The choice of architecture,

– The choice of programming language,

– The choice of compiler.

• It is useful to make comparisons between different highlevel algorithmic

approaches to solving a problem, especially on larger input

Asymptotic Notation

Asymptotic Notation in Seven Word:

suppress constant factors and lower-order

terms

system-dependent

irrelevant for

large inputs

Asymptotic Notation - Examples

• Consider first the problem of searching an array for a given

integer t. The code just checks each array entry in turn. If it ever

finds the integer t it returns true, and if it falls off the end of the

array without finding t it returns false.

• What is the asymptotic running time of the code for

searching one array, as a function of the array length n?

Asymptotic Notation - Examples

• Suppose we’re now given
two integer arrays A and B,
both of length n, and we
want to know whether a
target integer t is in either
one. Let’s again consider the
straightforward algorithm,
where we just search
through A, and if we fail to
find t in A, we then search
through B. If we don’t find t in
B either, we return false.

• What is the asymptotic running
time of the code for searching
Two arrays, as a function of the
arrays length n?

Asymptotic Notation - Examples

• Suppose we want to check whether or not two given arrays of length
n have a number in common. The simplest solution is to check all
possibilities. That is, for each index i into the array A and each index j
into the array B, we check if A[i] is the same number as B[j]. If it is,
we return true. If we exhaust all the possibilities without ever finding
equal elements, we can safely return false.

• What is the asymptotic

running time of the code for

checking for a common element,

as a function of the arrays

length n?

Asymptotic Notation - Examples

• Suppose we’re looking for duplicate entries in a single array A,

rather than in two different arrays.

• What is the asymptotic running time of the code for checking

for duplicates in one array, as a function of the array length n?

Big-O Notation
• The formal definition of big-O notation:

Big-O Notation (English Version)

T(n) = O(f(n)) if and only if T(n) is eventually bounded above by a

constant multiple of f(n)

Big-O Notation (Mathematical Version)

T(n) = O(f(n)) if and only if there exist positive constants c and n0 such

that T(n) <= c · f(n) (2.1)

for all n>= n0.

Big-O Notation

• If you want to prove that T(n) = O(f(n)), then your

task is to choose the constants c and n0 so that

(2.1) holds whenever n>= n0.

• OR:

• If T(n) = O(f(n)), then there are constants c and

n0 such that (2.1) holds for all n >= n0

Big-O Notation (Examples)

• Degree-k Polynomials are O(nk)

• Degree-k Polynomials Are Not O(nk-1)

Big-O Notation (Examples)

1. Degree-k Polynomials are O(nk)

• If T(n) is a polynomial with some degree k, then T(n) = O(nk).
How?

• Proposition 2.1 says that with a polynomial, in big-O notation,
all you need to worry about is the highest degree that appears
in the polynomial. Thus, big-O notation really is suppressing
constant factors and lower-order terms. Prove?

Big-O Notation (Examples)

• Find c and n0.

1. Try n0 =1 and c equal to the sum of absolute values of the

coefficients: c = |ak| + ··· + |a1| + |a0|.

2. We now need to show that these choices of constants

satisfy the definition, meaning that T(n) <= c*nk for all n

>=n0 = 1.

3. To verify this inequality, fix an arbitrary positive integer n

n0 = 1. We need a sequence of upper bounds on T(n) (for

coefficients and power of n), culminating in an upper

bound of c · nk. First let’s apply the definition of T(n):

Big-O Notation (Examples)

4. For coefficients, if we take the absolute value of each

coefficient ai on the right-hand side, the expression only

becomes larger

5. For power of n, nk is only bigger than ni for every i in {0,

1, 2,...,k}

6. Since |ai| is nonnegative, |ai|n
k is only bigger than |ai|n

i .

This means that

Big-O Notation (Examples)

• Degree-k Polynomials Are Not O(nk-1)

• Proposition 2.2 Let k 1 be a positive integer and define T(n)

= nk. Then T(n) is not O(nk-1).

• Proof by contradiction:

– Assume that nk is in fact O(nk-1), for all n> n0

– That is, there are positive constants c and n0 such that nk <= c · nk-1

– Cancel nk-1 from both sides of this inequality to derive n <= c, for all

n> n0

False statement

Big-O Notation

• Practice:

– Arrange the following functions in order of increasing

growth rate, with g(n) following f(n) in your list if and

only if f(n) = O(g(n)).

Big-Omega and Big-Theta Notation

• Big-O is analogous to “less than or equal to (≤),”

• Big-omega is analogous to “greater than or

equal(≥)

• Big-theta is “equal to (=),”

Big-Omega

Big-Theta

Asymptotic Notation

Asymptotic Notation

Asymptotic Notation

• True or False?

	Slide 1: Asymptotic Notation
	Slide 2: Today
	Slide 3: Asymptotic Notation
	Slide 4: Asymptotic Notation
	Slide 5: Asymptotic Notation - Examples
	Slide 6: Asymptotic Notation - Examples
	Slide 7: Asymptotic Notation - Examples
	Slide 8: Asymptotic Notation - Examples
	Slide 9: Big-O Notation
	Slide 10: Big-O Notation
	Slide 11: Big-O Notation (Examples)
	Slide 12: Big-O Notation (Examples)
	Slide 13: Big-O Notation (Examples)
	Slide 14: Big-O Notation (Examples)
	Slide 15: Big-O Notation (Examples)
	Slide 16: Big-O Notation
	Slide 17: Big-Omega and Big-Theta Notation
	Slide 18: Big-Omega
	Slide 19: Big-Theta
	Slide 20: Asymptotic Notation
	Slide 21: Asymptotic Notation
	Slide 22: Asymptotic Notation

