Dijkstra's Algorithm and Huffman Codes

COMP 215 Lecture 7
Dijkstra's Algorithm

- Floyd's algorithm was an order n^3 algorithm for finding all pairs of shortest paths.
- Overkill if we just need a shortest path from one particular node.
- The alternative is Dijkstra's algorithm.
- It is very very similar to Prim's algorithm.
- Let's do an example...
Dijkstra's Pseudocode

- Assume that we are finding paths from vertex v_1.
- Call the set of vertices already considered Y.
- We will maintain two arrays,
 - $\text{touch}[i] =$ index of the vertex v in Y such that (v,v_i) is the last edge on the current shortest path from v_1 to v_i.
 - $\text{length}[i] =$ length of the current shortest path from v_1 to v_i.
Void dijkstra(int n, number W[][], set_of_edges& F) {
 index vnear;
 number min;
 edge e;
 index touch[2..n];
 number length[2..n];
 F = EMPTYSET;
 for (i = 2; i<=n i++) {
 touch[i] = 1;
 length[i] = W[1][i];
 }
 CONTINUED ON NEXT SLIDE...
repeat (n - 1 times) {
 min = \infty;
 for (i = 2; i \leq n; i++) {
 if (0 \leq length[i] < min) {
 min = length[i];
 vnear = i;
 }
 }
 e = (touch[vnear], vnear);
 add e to F;
 for (i = 2; i \leq n; i++) {
 if (length[vnear] + W[vnear][i] < length[i]) {
 length[i] = length[vnear] + W[vnear][i];
 touch[i] = vnear;
 }
 }
 length[vnear] = -1;
}
Dijkstra Analysis

- Time complexity?
- What will F contain at the end of the algorithm?
- How do we retrieve the actual path?
- What if we wanted to know the length of the shortest paths?
Here are the 7-bit binary representations of the ascii codes for “a” and “q”.
- “a” - 1100001
- “q” - 1110001

Why 7 bits? We would be happier with a 3 bit code.
Coding Theory

- OK, we couldn't represent everything we want to represent.
- Why not use a 3 bit code (or 2 or 1) for “a” and a longer code for “q”?
Prefix Codes

- No codeword for one character is the beginning of a codeword for another.
- If 00 is the codeword for “a”, 001 can't be the codeword for “b”.
- Allows us to decode with a simple left to right scan.
- Prefix codes can be represented as binary trees.
- Let's see an example...
The Problem...

- Find the prefix code (tree) that gives the shortest encoding of a given string.
- Notice that the number of bits used by a given binary tree is equal to:

\[\sum_{i=1}^{n} \text{frequency}(v_i) \times \text{depth}(v_i) \]

- So, we are looking for the tree that minimizes this.
- The solution is Huffman codes.
- Let's see how they work...
Huffman Pseudocode

- We need a node type to build our tree from:

```c
struct nodetype
{
    char symbol;
    int frequency;

    nodetype* left;
    nodetype* right;
}
```

- The algorithm starts by creating one (leaf) node for each symbol.
- Those nodes are inserted into a heap.
- Lower frequency = higher priority.
Huffman Pseudocode

- We can then build the tree as follows:

```c
nodetype* huffman(int n, priorityQueue PQ)
{
    nodetype *p, *q, *r;
    for (int i = 1; i <= n; i++) {
        remove(PQ,p);
        remove(PQ,q);
        r = new nodetype;
        r->left = p;
        r->right = q;
        r->frequency = p->frequency + q->frequency;
        insert(PQ,r);
    }
    remove(PQ,r);
    return r;
}
```
Huffman Analysis

• Initializing a heap requires $\Theta(n)$ time.
• Individual heap operations require $\Theta(lg n)$ time.
• Correctness proof.