Complexity of Sorting

COMP 215 Lecture 14
Review of Sorts

- **Mergesort:**
 - Comparisons: \(W(n) = n \lg n, \ A(n) = n \lg n. \)
 - Assignments: \(T(n) = 2n \lg n. \)

- **Quicksort:**
 - Comparisons: \(W(n) = n^2/2, \ A(n) = 1.38 n \lg n. \)
 - Assignments: \(T(n) = .69n \lg n. \)

- **Heapsort:**
 - Comparisons: \(W(n) = 2n \lg n, \ A(n) = 2n \lg n. \)
 - Assignments: \(W(n) = n \lg n, \ A(n) = n \lg n. \)

- (these are approximations.)
Complexity of the Sorting Problem

• All of these algorithms make fewer than $\Theta(n^2)$ comparisons.
 - They must be removing more than one inversion per comparison.
 - Our one-inversion-per-comparison bound does not apply in general.

• Can we get a tighter bound on the complexity of the sort problem?

• The key is decision trees...
Decision Trees

- For every sort algorithm there is a corresponding decision tree.
- Here is a decision tree for *some* sort applied to three items a, b and c:

```
a<b
/  \y  n
\   \b<c
  y  n
  \   
  a,c,b a,b,c
    y  n
    \   
    b,c,a b,a,c
      y  n
      \   
      c,a,b a,c,b
        y  n
        \   
        b,c,a a,c,b
          y  n
          \   
        c,b,a a,b,c
          y  n
          \   
          b,c,a a,c,b
            y  n
            \   
            b,c,a a,c,b
              y  n
              \   
              b,c,a a,c,b
                y  n
                \   
                b,c,a a,c,b
                  y  n
                  \   
                  b,c,a a,c,b
                    y  n
                    \   
                    b,c,a a,c,b
                      y  n
                      \   
                      b,c,a a,c,b
                        y  n
                        \   
                        b,c,a a,c,b
                          y  n
                          \   
                          b,c,a a,c,b
                            y  n
                            \   
                            b,c,a a,c,b
```
Decision Trees

• For every deterministic algorithm that sorts n distinct keys there is a corresponding binary decision trees with exactly $n!$ leaves.

 − There are $n!$ different arrangements of n keys.

 − Any tree with fewer leaves would necessarily fail to sort some arrangement.

 − The tree is binary because our comparisons only tell us if one item is less than another. (Remember that we are thinking about n distinct items.)

• This allows us to find the lower bound on the complexity of the sort problem:

 − What is the minimum depth for a binary tree with $n!$ leaves?
Binary Tree Depth

- Binary tree of depth d, can have no more than 2^d leaves.
 - (Go through the induction proof?)
- So we have $n! \leq 2^d$, and we want to solve for d.
 - I.e. if a tree has $n!$ leaves how deep must it be?
- Take the lg of both sides:
 - $\lg(n!) \leq d$
 - Taking the log of $n!$ requires a little calculus:
 $$\lg(n!) = \lg[n(n-1)(n-2)\ldots(2)(1)] = \sum_{i=2}^{n} \lg i$$
 $$\sum_{i=2}^{n} \lg i \geq \int_{1}^{n} \lg x \, dx = \frac{1}{\ln 2}((n \ln n) - n + 1) \geq n \lg n - 1.45n$$
Lower Bound

• Any deterministic sort must make at least \([n \lg n - 1.45n] \) comparisons in the worst case.
 - The complexity of the sorting problem is in \(\Omega(n \lg n) \).

• Recall that worst case performance of mergesort is \(n \lg n - (n - 1) \).

• Additional DQs:
 - Can we imagine an algorithm guaranteed to match the lower bound?
 - What is the lower bound on the number of assignments?
Average Case

- We can also use a tree argument to find a lower bound for the average case.
- No longer interested in the minimum depth for a binary tree with $n!$ leaves.
- Interested in the minimum average depth for such a tree.
 - Book defines external path length (EPL) to be the sum of the distances from the root to the leaves.
 - Average comparisons for a given decision tree is: $\frac{EPL(n!)}{n!}$.
 - $\text{minEPL}(m)$ is the minimum EPL for a binary tree with m leaves.
 - Lower bound on average case sorting is $\frac{\text{minEPL}(n!)}{n!}$.
Average Case

- Computing $\frac{\text{minEPL}(n!)}{n!}$ is a bit of a slog. We won't do it in class.
- The final result is: $\lfloor n \lg n - 1.45n \rfloor$.
- At best one comparison fewer than the worst case.