Heapsort

COMP 215 Lecture 13
Heapsort

• Since a heap is a left complete binary tree, it can be stored in an array.
 - Entry 1 is the root.
 - $2i$ is the left child of the node at index i.
 - $2i + 1$ is the right child of the node at index i.

• Heapsort:
 - Build a valid heap starting with unordered keys: $\Theta(n)$.
 - Remove the root (largest) item n times, copying the result to an array. time?
 - It turns out that heapsort is in-place. (??)
Analysis of Key Removal

• We know that each remove operation takes $\lg(n)$ comparisons where n is the size of the heap.
• It does not immediately follow that n such operations must require $n \lg(n)$ comparisons.
• Recall that when n is a power of 2, there is exactly one node at level d in the tree.
 – So, no nodes will be sifted down through d levels.
 – 2^{d-1} nodes may be sifted down through $d-1$ levels.
 – 2^{d-2} nodes may be sifted down through $d-2$ levels.
 – And so on...
Analysis of Key Removal

- Each node sifted through requires two comparison
- Leading us to this summation:
 \[2 \sum_{j=1}^{d-1} j 2^j = 2n \lg n - 4n + 4 \]
- Since the number of comparison required to create the heap was \(2(n-1)\), the worst case number of comparisons for heapsort when \(n\) is a power of 2 is:
 \[2(n-1) + 2n \lg n - 4n + 4 = 2(n \lg n - n + 1) \in \Theta(n \lg n) \]
Space Usage

- The same array can be used to both maintain the heap, and store the output.
- In place.