Convex Hull

COMP 215 Lecture 5



Computational Geometry

* The area of CS concerned with solving geometric
problems.
* Examples:

— Finding intersections between line segments.
— Finding closest pairs of points.
— Finding the convex hull. (More on this 1n a second.)

* Uses in:
— Graphics.
— Robotics.

— VLSI design.
— etc.



Convex Hull

* The convex hull of a set Q of points 1s the smallest
convex polygon P for which each point Q 1s either on the

bOllIldaI‘y Of P or IIl ltS lnteI'IOI' (Introduction to Algorithms, Cormen et. al. 2001)

* The problem: For an arbitrary set of points Q, find the
corresponding P.



Line Segments Properties

* First question:
~ Given two directed line segments: p p and p p .18 PP,
clockwise from p p_?

A P P,




Cross Product

* 2dcross product: p,Xp,=x,y,—X,y,

v
* When this is positive p. 1s clockwise trom p,.

* When this 1s negative p, 1s clockwise from p .



Solution to Clockwise Problem

* The original question:
~ Given two directed line segments: p p and N2 18 D, P,
clockwise from p, p,?

* The solution: move p, and p, to use p, as the origin, and

calculate cross product:

(p,—p,)X(p,—p,)=(x,—x )(y,—y,)—(x,—x )(y,—y,)

* If this 1s positive then p_p, 1s clockwise from p ..



Clockwise Turns

* Next question: do two consecutive line segments p_p,
and p,p, make a clockwise, or counterclockwise turn at
p,?

* This 1s almost the same as the previous question:
p D,

Py

(p,—p)X(p,—p,)=(x,—x )(y,—y,)—(x,—x,)(y,—¥,)

* Positive 1s a clockwise turn, negative 1s
counterclockwise.



Back To Convex Hull

* Any ideas for a good algorithm?



Candidate Algorithm

* First, sort all points by their x coordinate.
~ (Theta(n lg n) time)
* Then divide and conquer:
— Find the convex hull of the left half of points.
— Find the convex hull of the right half of points.
— Merge the two hulls into one. (this 1s the tricky step.)



Convex Hull Pseudocode

//input: the number of points n, and
//an array of points S, sorted by x coord.
//output: the convex hull of the points in S.

point[] findHullDC(int n, point S[]) {
if (n > 1) {

int h = floor(n/2);

m = n-h;

point LH[], RH[]; //left and right hulls

LH = findHullDC(h, S[1l..h]);

RH = findHullDC(m, S[h+l..n]);

return mergeHulls(LH.size(), RH.size(),
LH, HR);

} else {

}

return S;




Merging Hulls

* Big picture:
— first find the lines that are upper tangent, and lower tangent to
the two hulls (the two red lines)

— Then remove the points that are cut off.



Finding Tangent Lines

* Start with the rightmost point of the left hull, and the
leftmost point of the right hull:

* While the line 1s not upper tangent to both left and right:
~— While the line 1s not upper tangent to the left, move to the next
point (counter-clockwise).
— While the line 1s not upper tangent to the right, move to the
next point (clockwise).



Checking Tangentness

* How can we tell if a line 1s upper tangent to the left hull?

* The pair of line segments p p, , and p,p,_ ., should
make a CCW turn at p.

* The same goes for p.p, and p,p,_ .



The Tricky Bits

* Hulls need to be maintained in order (CW or CCW).
* Needs to be stored in a data structure that allows

wrapped forward and backward iteration.
— Circularly linked list.
— Array with clever indexing.
* Several ways to handle base cases:
— Special code to create hulls of size 1,2, and 3?

— Clever merging that can merge a hull of size 2 with a hull of
size 1? (or 1 and 1, or 3 and 2, etc.)



Analysis & PP

* Let's talk about running time.
* Then let's talk about the programming project.



