The Knapsack Problem

COMP 215 Lecture 8



Greedy Algorithms vs. Dynamic Programming

* Both types of algorithms are generally applied to
optimization problems.

* Greedy algorithms tend to be faster.

* A greedy algorithm requires two preconditions:

— Greedy choice property - making a greedy choice never
precludes an optimal solution.

~— Optimal substructure property — an optimal solution to the
problem contains optimal solutions to the subproblems.

* If we have the second property then we can develop a
DP algorithm.

* If we have neither property then we are in tough shape.



Knapsack Problem

* 0-1 Knapsack Problem...
* Fractional Knapsack Problem...

* Greedy algorithm...



Greedy Knapsack Proof Preview

* Greedy choice property:
~ We need to show that our first greedy choice g, 1s included in

some optimal solution O.

* Optimal substructure property:

— We need to show that O-{g } 1s a solution to the problem left

over after we make our first greedy choice.

Proof adapted from Vicki Choy's lecture notes at Viginia Tech: http://people.cs.vt.edu/~vcho1/4104/



Greedy Choice Property

Let 0:{01, 0
P.

,»-.,0.] S I be the optimal solution of problem
J

Let GZ{g1 1 8y e gk} € [ be the greedy solution, where the
items are ordered according to the greedy choices.

We need to show that there exists some optimal solution O’ that
includes the choice g,.

CASE 1: g, 1s non-fractional.
- 1f g 18 included in O, then we are done.

- 1f g 18 not included in O then we arbitrarily remove w,, worth

of stuff from O and replace it with g, to produce O".

— (O'1s a solution, and it 1s at least as good as O.



Proof Continued...

* CASE 2: g, 1s fractional. (this means K =f* W, where 1 1s the

fraction of g chosen. K is the weight limit.)
- 1f O includes f* w_ units of g , then we are done.
g

- 1f O includes less than f of g , then we remove f* wglweight
from O arbitrarily and replace it with f* w,, units of g, to

construct O'.

O'1s a valid solution, and at least as good as O.



Optimal Substructure Proof

We have shown that there 1s an optimal solution O’ that selects g..

After g, 1s chosen the weight limit becomes K" = K —w , the item

set becomes I"'=1-{g,}.

Let P" be the knapsack problem such that the weight limit 1s K"
and the item set 1s I". We need to show that 0" = O'— {g } 1s an

optimal solution to P".

Proof 1s by contradiction. Assume that O" 1s not a solution to P".
Let Q be an optimal solution that 1s more valuable than O".

Let R=QU|g 1} . The value of O'1s equal to the value of
O"+g,.

The value of R is greater than the value of O'= 0"+ g..

Since O' was an optimal solution, this 1s a contradiction.



Optimal Substructure in the 0-1 Knapsack Problem

* Let O be an optimal subset of all n items with weight
limit K.

* We want to show that O contains a solution to all sub-
instances (by induction).

— CASE 1: If O does not contain item n, then it 1s clearly an
optimal subset of the first n-1 items.

— CASE 2: If O does contain item 7, then O-{n} 1s a solution to
the problem instance that includes the first n-1 items, and a
weight limit K-w .

* Proof by contradiction, if O — {n} is not a solution, then there must be
some other subset Q with higher profit. By adding the nth item to Q,

we have a subset of the first n items with higher profit than O, a
contradiction.



Dynamic Programming for 0-1 Knapsck

First, why can't we have a greedy algorithm for this
problem? Let's look back at the fractional proof.

The reasoning on the previous slide leads us to the
following recurrence for maximum profit P on the first i
items with a weight limit of w:

CASE 1 CASE2
| max @ —1]|w— w if w<w
Plil[w]=

if w>w

P[1][0] = 0 and P[O][w] =

Let's write the algorithm!



Analysis

Running time is 1n O (nW).

Is that good?

Room for improvement?



A Better Algorithm

* We get a more efficient algorithm by only computing
necessary entries.
— The nth row requires at most one entry: P[n][W].
~ the n-1st row requires at most two entries P[n-1][W] and

Pln-11[W-w ].

~ the n-2nd row requires at most four entries, two for each in the

n-1st row.
~ 1 4+24+224+ .. 420 =21

* So regardless of weight limit, this algorithm gives a
bound of ©(2")

* Incorporating the weight limit, we have O(min(nW, 2")).



