I. Introduction, Chapter 1: The role of Algorithms in Computing

A. Definition of an algorithm and difference from a program
B. Algorithms as technology
 i. A good algorithm on a slow computer beats a bad one on a fast computer
 ii. Growth of functions
 iii. Polynomial time

II. Appendices A and B

A. Discrete Math review
B. Summation review

III. Chapter 2: Getting Started

A. Insertion sort
 i. Loop invariants
 a. Initialization
 b. Maintenance
 c. Termination
 ii. Pre and Post Conditions
 iii. Program correctness
 iv. Loop correctness
B. Analyzing Algorithms
 i. “Best case” analysis
 ii. “Worst case” analysis
 iii. “Average case” analysis
 a. Mean time as average
 b. Random input as average for a sort
C. Designing Algorithms
 i. Divide and Conquer - Merge Sort
 ii. Analyzing divide and conquer - recurrence equation

IV. Chapter 3: Growth of Functions

A. Asymptotic notation
 i. “Big O”
 \[O(g(n)) \in \{ f(n) : \text{there exist positive constants } c_2 \text{ and } n_0 \text{ such that } f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \} \]
 ii. “Little o” \(o(g(n)) \)
 iii. “Big Omega”
 \[\Omega(g(n)) \in \{ f(n) : \text{there exist positive constants } c_1 \text{ and } n_0 \text{ such that } c_1 g(n) \leq f(n) \text{ for all } n \geq n_0 \} \]
 iv. “Little omega” \(\omega(g(n)) \)
 v. “Big theta”
 \[\Theta(g(n)) \in \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \} \]
 vi. If the same function \(f(n) \) is both \(O(g(n)) \) and \(\Omega(g(n)) \) then \(f(n) \in \Theta(g(n)) \)
B. Shortcuts
 i. Leading constants can be ignored, i.e. \(O(2n^5) \in O(n^5) \)
ii. All logs differ by a constant, i.e. $O(n \log n) \in O(n \log_2 n)$

V. Chapter 4: Divide and Conquer

A. Recursions
 i. Must be able to divide the problem into sub-problems that are identical to the original problem
 ii. Solutions to the sub-problem must contribute to the solution of the original problem

B. $T(n)$
 i. Basically, the solution is a proof by induction
 ii. Need base case (where do we stop?)
 iii. Need inductive hypothesis
 iv. Must show I.H. \rightarrow next recursion

C. Solution by recursion tree

D. Solution by substitution
 i. $c_1 g(n) \leq T(n) \leq c_2 g(n)$ for $c_1, c_2 > 0$ and $n \geq n_0$ as n grows large
 ii. guess
 iii. show your guess is correct

E. Master Theorem

Material for Exam II starts here

VI. Chapter 6: Heap Sort

A. Heaps
 i. Definition of a Heap
 ii. Uses of a Heap
 a. Heap Sort
 b. Priority Queues

B. MAX-HEAPIFY(A, i)
 i. Pre-condition: $A[i+1, i+2, \ldots, n]$ are roots of valid heaps
 ii. Time analysis: $O(\log_2 n)$
 iii. Post condition: $A[i, i+1, i+2, \ldots, n]$ are roots of valid heaps

C. BUILD-MAX-HEAP(A)
 i. Pre-condition: $A[i, i+1, i+2, \ldots, n] \neq \emptyset$ and $A[i, i+1, i+2, \ldots, n]$ are comparable.
 ii. Time analysis: $O(\log_2 n)$
 iii. Post condition: A is a valid heap
 iv. Why does the algorithm start at $A.heapsize/2$?

D. HEAPSORT(A)
 i. Pre-condition: $A[i, i+1, i+2, \ldots, n] \neq \emptyset$ and $A[i, i+1, i+2, \ldots, n]$ are comparable.
 ii. Time analysis: $O(n \log_2 n)$
 iii. Post condition: $A[]$ is a sorted array
 a. Ascending if using a max heap
 b. Descending if using a min heap

E. Priority queues
 i. Create a heap from an array
 ii. Can change a priority in $O(\log_2 n)$ time
 iii. Can dequeue an entry and fix the queue in $O(\log_2 n)$ time
VII. Chapter 7: Quicksort
 A. Description of Quicksort
 B. Description of PARTITION
 C. Performance
 i. Worst case:
 a. Already sorted
 b. $O(n^2)$
 ii. Best case:
 a. Partitioning is balanced
 b. $O(n \log_2 n)$
 iii. Random input:
 a. Much closer to best case than worst case
 b. $O(n \log_2 n)$
 iv. Can get best performance in the vast majority of cases with randomized PARTITION.

VIII. Chapter 15: Dynamic Programming
 A. Rod cutting
 i. Recursive top-down $O(2^n)$ (ouch!)
 ii. Top-down Memoization (dynamic programming)
 iii. Bottom-up Memoization
 iv. Re-constructing the solution
 B. Longest Common Subsequence
 i. Dynamic Programming solution
 ii. “Breadcrumbs”
 C. 0/1 Knapsack
 i. Dynamic programming
 ii. Re-constructing the solution
 iii. Remember: This solution is not polynomial time
 iv. Table can be large as n and capacity of the knapsack grow large

IX. Chapter 16: Greedy Algorithms
 A. Elements of the greedy strategy
 B. Greedy choice property
 C. Optimal substructure or Property of Optimality (POO)
 D. Fractional Knapsack
 E. Huffman codes
 i. Prefix codes
 ii. Constructing the code (binary tree)
 F. Coin changing problem (fewest coins to make change)
 i. Greedy algorithm
 ii. Example where it does not work
 G. 0/1 Knapsack
 i. Greedy algorithm
 ii. Does not always work (oops!)
Material for Exam II starts here

X. Chapter 22: Elementary Graph Algorithms

A. Definitions
 i. vertex (node, point, etc.)
 ii. edge
 iii. weight
 iv. arc
 v. graph
 vi. digraph
 vii. subgraph
 viii. connected graph or digraph
 ix. tree
 x. spanning tree
 xi. path (or chain)
 xii. cycle
 xiii. \(\text{deg}(v) \)
 xiv. \(\text{indeg}(v) \), and \(\text{outdeg}(v) \)

B. Representations of graphs in the computer
 i. adjacency matrix
 ii. adjacency list
 iii. adjacency list as a vector (don’t worry, you won’t see this again in this class)
 iv. Missing edges
 v. Arc/Edge weights (cost, speed, tolls, or whatever)

C. Breadth First Search
D. Depth First Search (digraphs)
E. Topological Sort (digraph)
 i. Based upon DFS
 ii. Alternate method removing nodes and arcs

XI. Chapter 23: Minimum Spanning Trees

A. Prim’s (Greedy)
B. Kruskal’s (Greedy)

XII. Chapter 24: Single-Source Shortest Paths

A. Dijkstra
 i. Greedy algorithm
 ii. Graph
 iii. Digraph
 iv. Positive weights

B. Bellman-Ford
 i. Greedy algorithm
 ii. Graph
 iii. Digraph
 iv. Weights
 a. All positive - returns true
b. Negative - returns false

XIII. Chapter 34: NP Completeness

A. Polynomial time (on a determinate computer) problems
 i. “Easy” problems
 ii. Time complexities are polynomial in problem size, n
 iii. Example: $T(n) = an^2 + bn + c$

B. NP (Non-determinate computer Polynomial time) problems
 i. Many are optimization problems, but not all
 ii. Definition: CAREFUL, this is not “non-Polynomial Time”
 iii. Examples we have seen before (0/1 knapsack, TSP, etc.)
 iv. Intractable
 v. No known Polynomial time solution
 vi. Solutions typically have time complexities of $O(2^n)$ or worse
 vii. Solution can be verified in polynomial time.

C. NP Complete
 i. NP Hard
 ii. Decision problems (answer is always “yes” or “no”, 0/1)
 iii. If we can solve one in polynomial time, we can solve them all in polynomial time and then there is a good chance $P = NP$
 iv. Most CS researchers “believe” $P \neq NP$ (The Question!)

D. Examples
 i. Simple changes to an easy problem can make it NP Complete
 ii. Polynomial time solutions
 a. Known solutions for deterministic computer in polynomial time
 b. Fractional Knapsack
 c. Euler Cycle or path
 d. Single source shortest path
 iii. Non-deterministic Polynomial time solutions
 a. no known solutions for deterministic computer in polynomial time
 b. 0/1 Knapsack
 c. Hamiltonian Cycle or path
 d. Single source longest acyclic path