Halting Problem Motivation...

• Infinite loops are a problem:

```
x = 10;
while x < 20,
    x = x - 1;
end
```

• Why don't compilers check for this?

• Can't be done (perfectly). We'll see a proof by contradiction.
HALT program

- Assume we have a program HALT:
 - Take a program description, as well as a program input.
 - Returns “halt” if the program halts.
 - Returns “loops” if the program loops forever.

\[\langle P, I \rangle \xrightarrow{} \text{HALT} \xrightarrow{} \text{“halts” or “loops”} \]

(this follows a proof from Sipser's *Introduction to the Theory of Computation*, 2006)
Let's create a new program D, that uses HALT as a subroutine.

D takes a program description as input.
- Sends the program as both program and input to HALT.
- If HALT says “halt” D enters an infinite loop.
- If HALT says “loops” D halts.
The Contradiction...

- Now we pass $<D>$ to the program D.

- What happens?
 - If HALT tells D that D halts on input $<D>$, then D loops forever on input $<D>$.
 - If HALT tells D that D loops forever on input $<D>$, then D halts on input $<D>$.
What?

- We assumed the existence of a program HALT that can always determine whether a program will halt or run forever.
- We constructed a scenario in which, no matter what answer HALT returns it is wrong.
- Therefore HALT cannot exist.
Rice's Theorem

- Any non-trivial property of programs is undecidable.
- The halting problem is one example among many.
Intractable Problems

- I’ve claimed that the traveling salesperson problem is intractable.
- The best algorithm we’ve seen so far is O(N!).
- How can we know that there isn’t a better algorithm? Maybe O(N)?
- The short answer is that we can’t.
- There is a longer answer that leads us to conclude that TSP is very likely intractable…
P and NP

- P the set of problems that can be solved in polynomial time by some algorithm.
- NP the set of problems that can be solved in polynomial time by a non-deterministic algorithm.
- Non-deterministic??
Non-Determinism

• Deterministic algorithm must *find* a solution.

• Non-deterministic algorithms get to guess a solution, and only need to *check it*.

• Examples:
 - Sorting has a deterministic polynomial time algorithm.
 - TSP-decision problem has a non-deterministic polynomial time algorithm.
What's the Difference?

• Everyone who is anyone believes that P and NP are different sets.

• In other words, there are some problems that can be solved in polynomial time using non-determinism, but can’t be solved in polynomial time deterministically.
An Aside: Reductions

- Problem A is said to be reducible to problem B if
 - An efficient solution to B would yield an efficient solution to A.

- Example:
 - IS-THERE-A-PATH is reducible to FIND-SHORTEST-PATH.

- Informally, if A reduces to B, B is at least as hard as A.
NP-Completeness

• It turns out there is (at least) one problem that all problems in NP reduce to: SAT.
 - SAT is the problem of checking to see if a boolean expression is satisfiable.

• Therefore an efficient solution to SAT would yield an efficient solution to every problem in NP.
 - SAT is NP-Complete.
 - SAT is (probably) intractable.

• (We won't prove this...)
Are There Other NP-Complete Problems?

• If so, how would we show it?

• Reductions – Any problem that SAT reduces to is also NP-Complete.

• There are *many* such problems.