Algorithms
Problems, Algorithms, Programs

- Problem - a well defined task.
 - Sort a list of numbers.
 - Find a particular item in a list.
 - Find a winning chess move.
Algorithms

- A series of precise steps, known to stop eventually, that solve a problem.
- NOT necessarily tied to computers.
- There can be many algorithms to solve the same problem.
Characteristics of an Algorithm

- Precise steps.
- Effective steps.
- Has an output.
- Terminates eventually.
Trivial Algorithm

- Computing an average:
 - Sum up all of the values.
 - Divide the sum by the number of values.
Problems vs. Algorithms vs. Programs

- There can be many algorithms that solve the same problem.
- There can be many programs that implement the same algorithm.
- We are concerned with:
 - Analyzing the difficulty of problems.
 - Finding good algorithms.
 - Analyzing the efficiency of algorithms.
Example: Search

- Search through a list of items for a particular value.

- Example:
 - Search through an array of student records for the student with ID 12345.
 - Search through an array of address records for the address of the person with last name Doe.
Linear Search

- If we are searching in a list, start at the beginning and check each element until we find the one we want or reach the end.
- Best case?
- Worst case?
- Average case?
Binary Search

- If we are searching in a sorted list, we look at the middle item and then choose which half to continue looking in.
- We continue to cut the area we are searching in half until we find the value, or there are no more values to check.
- Best case?
- Worst case?
- Average case? (A little tricky)
Binary Search: Worst Case

- Let’s say the list has 1024 items and the item is the last one we check.
 - Check midpoint of 1024 items.
 - Check midpoint of upper or lower half (512).
 - Check midpoint of a half of that half (128).
 - Successive ranges we are checking have lengths 64, 32, 16, 8, 4, 2, 1.
 - How many checks was that? 10
 \((\log 1024 = 10)\)
Binary Search

- Aside: Note that binary search only works if the data in the list are sorted by the field on which we’re searching!
Classifying Problems

- Problems fall into two categories.
 - Computable problems can be solved using an algorithm.
 - Non-computable problems have no algorithm to solve them.

- Historical note:
 - Hilbert’s questions in 1900: complete? Consistent? Decidable?
Classifying Problems

- **Historical note:**
 - Hilbert posed the following questions in 1900: Is mathematics complete? Is mathematics consistent? Is every statement in mathematics decidable?
 - In 1930, he thought the all 3 answers would be “yes.”
 - Almost immediately, Gödel showed that no closed system can be both complete & consistent.
 - By the mid-1930’s, Turing showed that the answer to the 3rd question is “no.”
Classifying Problems

Two categories of problems:
- Computable
- Non-computable

 Wouldn’t it be nice to know which category a problem falls into? (Topic for later in the week: this problem itself is non-computable.)
Classifying Computable Problems

- **Tractable**
 - There is an efficient algorithm to solve the problem.

- **Intractable**
 - There is an algorithm to solve the problem but there is no efficient algorithm. (This is difficult to prove.)
Examples

- Sorting: tractable.
- The traveling salesperson problem: intractable. (we think…)
- Halting Problem: non-computable.
 – (More on this later in the week.)
Measuring Efficiency

- We are (usually) concerned with the time an algorithm takes to complete.
- We often count the number of times blocks of code are executed, as a function of the size of the input.
 - Why not measure time directly?
 - Why not count the number of instructions executed?
Example Code:

def aFunction(array):
 statementA
 statementB
 statementC
 for x in array:
 statementD
 statementE
 return someValue

- If the array has N elements, this function executes $4 + (2 \times N)$ statements (i.e., $2N + 4$).
Some Mathematical Background

- Let’s see some examples ...
Big O

- The worst case running time, discounting constants and lower order terms.

- Example:
 - $n^3 + 2n$ is $O(n^3)$
Exchange Sort

def exchangeSort(array):
 for indx1 in range(len(array)):
 for indx2 in range(indx1, len(array)):
 if (array[indx1] > array[indx2]):
 swap(array, indx1, indx2)

Let’s work out the big O running time...
Merge Sort

- Given a list, split it into 2 equal piles.
- Then split each of these piles in half. Continue to do this until you are left with 1 element in each pile.
- Now merge piles back together in order.
Merge Sort

- An example of how the merge works:
 Suppose the first half and second half of an array are sorted:
 5 9 10 12 17 1 8 11 20 32
- Merge these by taking a new element from either the first or second subarray, choosing the smallest of the remaining elements.
- Big O running time?
Big O Can Be Misleading

- Big O analysis is concerned with worst case behavior.
- Sometimes we know that we are not dealing with the worst case.
Searching an Array

def search(array, key):
 for x in array:
 if x == key:
 return key

- Worst case?
- Best case?
Algorithms Exercise...