MODULE 9.4

Computational Toolbox—Tools of the Trade: Tutorial 5

Prerequisite: Madule 9.1. “Computational Toolbox—Tools of the Trade:
Tutorial 4.

Download

From the textbook's website, download Tutorial 5 in the format of your computa-
tional tool or in PDF format. We recommend that you work through the tutorial and
answer all Quick Review Questions using the corresponding software.

Introduction

This fifth computational toolbox tutorial, which is dvailable from the texthook’s
website in your system of choice, prepares you (o use the system to complete proj-
ects for this and subsequent chapters. The tutorial introduces the following functions
and concepts:

+ Taking part of a list

+ Maximum and minimum functions
* Animation

Logical operators

Amay/list membership

While loop

‘The module gives computational examples and Quick Review Questions for you to
complete and exccute in the desired software system.

MODULE 9.5

Random Walk

Downloads

For several computational tools, the text’s website has a RandomWalk file, which
contains code for the module’s algorithms, available for download. The site also has
a data file AverageDistances.dat for Project 3.

Introduction

One technique of Monte Carlo simulations that has many applications in the sciences
is the random walk. Random walk refers to the apparently random movement of an
entity. In a time-driven simulation, we depict the entity in a cell on a rectangular
grid. At any time step, the entity can move, perhaps under certain constraints, at
random to a neighboring cell.

Definition Random walk refers to the apparently random movement of an
.. entity. : S

A certain type of computer simulation involving grids is a cellular automaton.
Cellular automata arc dynamic computational models that arc discrete in space,
state, and time. We picture space as a one-, two-, or threc-dimensional grid. or array.
or lattice. A site, or cell, of the grid has a state. and the number of states is tinite.
Rules, or transition rules, specifying local relationships and indicating how cells
are 1o change state, regulate the behavior of the system. An advantage of such grid-
based models is that we can visualize the progress of events through informative ani-
mations. For example, we can view a simulation of the movement of ants toward a
food source, the spread of fire, or the motion of gas molecules in a container. In this
module, the next chapter, and various modules in Chapter 14, we consider many
scientific applications involving cellular automata.
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L Definitions A cellular automaten (plural, automata) is a type of computer -
simulation that is a dynamic computational model and is discrete

in spuce, state, and time. Space is a grid, or a one-, two-, or three- -
- dimensional lattice, or array, of sites, or cells. A cell of the lattice
has u state, and the number of states is finite. Rules, or transition

rules, specifying local relationships and indicating how cells are

to change state, regulate the behavior of the system,

A rundom walk cellular automaton can medel Brownian motion, which is the
behavior of a molecule suspended in a liquid. The phenomenon bears the name of
the English botanist Robert Brown. In 1827, he observed the rapid, random motion
of pollen particles in a liquid could not accur because of life within the pollen, as
some conjectured. A generation later, the physicists Maxwell, Clausius, and Einstein
cxplained the phenomenon as invisible liquid particles striking the visible particles,
causing small movements. Because diffusion of many things, such as pollutants in
the atmosphere and calcium in living bone tissue, exhibit Brownian motion, simula-
tions using random walks can also model these processes (Encyclopedia Britannica
1997: Exploratorium 1995).

In genetics, random walks have been used 1o simulate mutation of genes. As an-
other example, scientists use the methed pelymerase chain reaction (PCR) to make
many copies of particular pieces of DNA. A strand of DNA contains sequences of
four bases, A, T, C, and G. Using the random walk technique in simulations, compu-

tational scientists can determine good proportions of these bases in solution to speed
replication of the DNA,

Algorithm for Random Walk

At each time step of a particular random walk simulation, Suppose an entity moves
in a random, diagonal direction—NE, NW, SE. or SW. To go in such a direction. the
entity walks east or west one unit and north or south one unit, covering a diagonal
distance of 2 units.

We develop a function, randomWalk Points. with parameter, n, for the number of
steps. The function generates such a walk and returns a list or array of the coordi-
nates of the steps. In the function body, variables v and ¥ store the horizontal and
vertical coordinates, respectively, of the current location, and variable s holds a list
of locations in the path of the entity. Because the walker starts at the origin, we ini-
tialize !sf to be a list containing the point (0, 0). With parameter n being the number
of steps to be taken, a loop to produce the path executes # times. Within the loop, we
generate one random integer of 0 or 1 to determine if the entity tums to the east or
west by incrementing or decrementing x by 1, respectively. Then, another such “flip
of the coin™ dictates north with an increment of yor south with a decrement. We then
append the new point (x. ¥) onto the developing Ist. After the loop at the end of the
function, we return this list of points.

Following is pseudocode. or a structured English outline of the design, for the
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Quick Review Question 1

The following questions refer to randomWalkPoinis:

s does Ist have?
. any elements d o
a. After exccution of the loop, how many ¢ djacent 10 each other in I57°

b. Is it possible for the points (3.5)and (3,6) tobe @
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Figure 9.5.1 One possible display from exceution of randam WalkPoints

Animate Path

Visualization of the path as it develops can aid in understanding the movement of the
entity. Figure 9.5.2 presents several frames in such an animation,

To generate an animation, we d;velop a function, animateWalk, which has as a
parameter a list, Is¢, of # + | poinis in a random walk. For each i going from 1
through n + 1, we create a graphics of the first i points of the walk, which are in a
sublist of the first i points of Ist. Thus, we generate a sequence of i + | displays that
we can animate with an appropriate computational tool. For the animation to be con-
sistent, we specify that cach graphics have the same axes, between the minimum and
maximum of all x-coordinates on the x-axis and the minimum and maximum y-coor-
dinates on the y-axis. The complete desu,n of animateWalk follows.

ammateWaIk(Ist) T - .-;f o
Funcuon to genemte an'anunnuon of 8 mndom walk S L
“:Pres lst is the hst ot‘ the poinm in the walk

" Post: An nmmat:on of lhe wnlk hns uen genemted
: - Algorithm: -~ ° E

" xMin «— minimum of Fcoondinates in I.n
xMax + maximum of ;acoordinum inlst -

- yMin « minimum of yicoordinates in Ist
yMaxc-—maximum ofy-cootdmntesin Ist- oo . S
for i going from 1 throvghn+ L'do the following: . .~ H
" display a graphics of the first ¥ poims of Ist with the dlspluy gomg from -
xMin to xMax in'the rec;lon nnd from nyn to yMax in thc y-dlrecuon :
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Figure 9.5.2  Several frames in an animation of the developing path from one random walk
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Figure 9.5.2 (continued)

: Average Distance Covered

For the random walk in Figure 9.5.1, 5.09902 units is the distance between the final
point and the initial one, which are the two black dots. However, because the walks
are random, great variation can exist in both the paths and in the final distances from
the starting point. Thus, to obtain an estimate of a typical distance between the start-
ing and ending poinis of a random walk of # steps, we should run the simulation
many times and take the average of all the distances. In such a case, we are not inter-
ested in viewing a random walk, so we first define another function. random Walk-
Disiance, that is similar 10 randomWalkPoints, but which returns the desired dis-
tance instead of the list of points in a walk, Thus, in the loop that processes each step,
we keep only the current point, (x, ¥), and, after the loap, we return the distance from
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the last point value of (x, ¥) and the origin. J.r’ +1° . The next Quick Review Ques-
tion designs this function.

Quick Review Question 2

similar to randomWalkPoints, give a design for randomWalkDistance, 3 function
with parameter. n, that returns the distance between the first and last point of a ran-
dom walk of n steps.

For a function meanRandomWalkDistance. which returns the average distance
wraveled over monTests number of random walks of n steps cach, we place a call to
randomWalkPoints(n) in a loop that iterates mumTests number of times. A variable,
sumDist, accumulates the distances covered by the random walks. Before the loop,
sumDist is initialized to zero; after the Joop, this sum is divided by numTests to re-
wrn the average distance. One run of memlRandomWalkDismnce(ZS. 100) might
return an average distance of 5.75278 units for 100 simulations of random walks of
25 steps. The design of the function follows.

~ meanRandom Wa@k?anée(n, numTe;tk'). o
" Punction to run a rgiidom walk sirulation numTests
i ﬂﬂa‘lds‘” ints - o

return the average aiét@ﬁce between the fi

Algorithm: BN 4
' lctszq)il_zm.méongoingsum_o_f,dls_m_ﬁdes.beo
do'the following suimTests times: e
add randomWalkDistance{n) to sumDisi o
retugni suinDist | nuinTests as a-flonting point puinber. -

f
i
t

Quick Review Question 3

If we incorrectly move the initinlization of swmDist inside the outer Joop of mean-
RandomWalkDistance, select the final value of sumDist:

A. No change from curremt result.

B. sumDist would be 0.

C. sumDist would hold only the distance for the final path.
D. stmDist would be undefined.
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Figure 953 Aplotof average distances traveled versus number of steps in a random walk

Relationship between Number of Steps
and Distance Covered

To discern a relationship between the number of steps, », and average distunce cov-
ered in a random walk, we execute meanRandom WalkDistance(n, 100) for values of
n from 1 to 50 and store each average distance in a list or array, fistDist. Then, we
employ the techniques of Module 8.3, “Empirical Models. to determine the rela-
tionship. Figure 9.5.3 shows a plot of the average distances traveled versus the num-
ber of steps. Projects 3 and 4 determine a formula for this relationship.

Exercises

On the text’s website, RandomWalk files Jor several computational tools contain the
code for the functions of this module. Complete the following exercises using vour
computational 100l

L. If possible in your computational tool, revise the code of random WalkPoins
to replace the loop with a call to a function 1o formulate isr.

2. Revise the code of randomWalkPoints or Exercise | to have the entity go
with equal probability in a N, S, E, or W dircction. Hing: Choose the direc-
tion based the value of a random integer, 0, 1, 2, or 3.

3. a. Revise the code of randomWatkPoints to have the entity go in an easterly

direction (incrementing x) with probability of 30% and in a westerly di-
rection (decrementing ) with probability of 70%.
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b. Revise the code of Part a, to have the entity go in a northerly direction
’ (incrementing v) with probability of 45% and in a southerly direction
: (decrementing v) with probability of 55%.

¢. Give the probability for the entity going in cach direction. NE. NW, SE,

and SW.

4, Revise the code of randomWalkPoints or Exercise | to have the entity go in
] a N, S, E. or W direction with probabilities of 20%. 30%, 45%. or 5%,
_* respectively.

" Projects

E On the text’s website, RandomWalk files for several computational tools contain the
code for the module’s algorithms. Complete the following projects using your soft-
wdare svstem.

For additional projects. see Module 14.1, “Polymers—Strings of Pearls.” and
Modute 14.2, “Solidification—Let's Make It Crystal Clear!™

. Exercise |

. Exercise 2

. Download the data file AverageDistances.dar of average distances covered

for step sizes from | to 50 from the text’s website, Using the techniques of

Module 8.3, “Empirical Models.” determine a relationship between the num-

ber of steps. 1, and average distance covered in 2 random walk.

Develop code as discussed in the section on “Relutionship between Number

of Steps and Distance Covered” 1o obtain a list of average distances covered

for random walks of step sizes from 1 to 50. Then, using the data the program

. generates, do the analysis of Project 3.

S 5. Develop code as discussed in the section on “Relationship between Number

; of Steps and Distance Covered™ to obtain a list of average distances covered

S for random walks of step sizes from 1 to 50, where the entity travels E. W, N,

T or S with each step. Then, using the duta the program generates, do the analy-
sis of Project 3.

6. Develop code for Exercise 3 and run the simulation for 50 time steps. Include
this cude in a loop that runs the simulation 1600 or more times. Have the scg-
ment return the portion of time the entity ends on the 50th step in each of the
four quadrants, NE, NW, SE, and SW. Do the figures seem lo agree with
your answer to Exercise 3c?

7. Develop code for Exercise 4 and run the simulation for 50 time steps. Include
this code in a loop that runs the simulation 1000 or more times. Have the seg-
ment return the portion of time the entity ends on the 50th step in the N, S.E.
or W direction from the starting location, the origin. On a particular run of
the simulation, the 50th step could fall into one category, such as due north of
the origin, or in two categories, such as N and E of the origin. Discuss the
results in relationship to the probabilities of Exercisc 4.

8. A hiker without a compass trying to find the way in the dark can step in any

of cight directions (N. NE. E. SE. S, SW. W, NW) with each step. Studies

N -
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show that people tend to veer to the right under such cirdumstances. Initially,
the hiker is facing north. Suppose at each step probabilities of going in the
indicated directions are as follows: N, 19%; NE, 24%: E. 17%: SE, 10%: S,
2G0; SW, 3%: W, 10%: NW, 15%. Develop a simulation to trace a path of a
hiker. and run the simulation a number of times, Describe the results, (Note
that other than at the initial step, this simulation simplifics the problem by
ignoring the dircction in which the hiker faces.)

9. Perform a simulation of Brownian motion of a pollen grain suspended in a
liquid by gencrating a 3D random walk. Using documentation for your com-
putational tool, investigate how to plot 3D graphics points and lines and cre-
ate a 3D graphic of the walk.

Answers to Quick Review Question

L. a. 1+ 1 clements, (0, 0) and the n appended points
b. No, both coordinates are changed in the body of the loop.

random WalkDi.ilahce(n)ﬁ_ S .
. Fungcton to produce a random walk, where at each time step the entity
-~ goes diagonally, and 16 return the distance between the first and last

: * 1 thé number of steps in the walk. = ..
“The distarice between the first and lust points of a ran-
dom walk of n steps was returned.
Algorithm: .
TseOmdye0
.- dothe following n times:
rangd «=a.random 0of 1-; e
if rand is 0, increment x by 1; else decrement x by |
. rand «urandom Oor 1 R
" ifrandis 0, increment y by 1; else decrement y by 1

3. C. sumDist would hold only the distance for the final path.
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