

Problems, Algorithms, Programs

Problem - a well defined task.

- Sort a list of numbers.
- Find a particular item in a list.
- Find a winning chess move.

Algorithms

- A series of precise steps, known to stop eventually, that solve a problem.
- NOT necessarily tied to computers.
- There can be many algorithms to solve the same problem.

Characteristics of an Algorithm

Precise steps.

- Effective steps.
- Has an output.
- Terminates eventually.

Trivial Algorithm

Computing an average:

- Sum up all of the values.
- Divide the sum by the number of values.

Problems vs. Algorithms vs. Programs

- There can be many algorithms that solve the same problem.
- There can be many programs that implement the same algorithm.
- We are concerned with:
 - Analyzing the difficulty of problems.
 - Finding good algorithms.
 - Analyzing the efficiency of algorithms.

Example: Search

- Search through a list of items for a particular value.
- Example:
 - Search through an array of student records for the student with ID 12345.
 - Search through an array of address records for the address of the person with last name Doe.

Linear Search

- If we are searching in a list, start at the beginning and check each element until we find the one we want or reach the end.
- Best case?
- Worst case?
- Average case?

Binary Search

- If we are searching in a sorted list, we look at the middle item and then choose which half to continue looking in.
- We continue to cut the area we are searching in half until we find the value, or there are no more values to check.
- Best case?
- Worst case?
- Average case? (A little tricky)

Binary Search: Worst Case

- Let's say the list has1024 items and the item is the last one we check.
 - Check midpoint of 1024 items.
 - Check midpoint of upper or lower half (512).
 - Check midpoint of a half of that half (128).
 - Successive ranges we are checking have lengths 64, 32, 16, 8, 4, 2, 1.
 - How many checks was that? 10 $(\log 1024 = 10)$

Binar Aside work by th

Binary Search

Aside: Note that binary search only works if the data in the list are **sorted** by the field on which we're searching!

Classifying Problems

Problems fall into two categories.

- Computable problems can be solved using an algorithm.
- Non-computable problems have no algorithm to solve them.
- Historical note:
 - Hilbert's questions in 1900: complete? Consistent? Decidable?

Classifying Problems

Historical note:

- Hilbert posed the following questions in 1900: Is mathematics complete? Is mathematics consistent? Is every statement in mathematics decidable?
- In 1930, he thought the all 3 answers would be "yes."
- Almost immediately, Gödel showed that no closed system can be both complete & consistent.
- By the mid-1930's, Turing showed that the answer to the 3rd question is "no."

Classifying Problems

- Two categories of problems:
 - Computable
 - Non-computable

Wouldn't it be nice to know which category a problem falls into? (Topic for later in the week: this problem itself is non-computable.)

Classifying Computable Problems

Tractable

There is an efficient algorithm to solve the problem.

Intractable

 There is an algorithm to solve the problem but there is no efficient algorithm. (This is difficult to prove.)

Examples

Sorting: tractable.

- The traveling salesperson problem: intractable. (we think...)
- Halting Problem: non-computable.

- (More on this later in the week.)

Measuring Efficiency

- We are (usually) concerned with the time an algorithm takes to complete.
- We often count the number of times blocks of code are executed, as a function of the size of the input.
 - Why not measure time directly?
 - Why not count the number of instructions executed?

Example Code:

def aFunction(array):
 statementA
 statementB
 statementC
 for x in array:
 statementD
 statementE
 return someValue

If the array has N elements, this function executes 4 + (2 * N) statements (i.e., 2N + 4).

Some Mathematical Background

Let's see some examples ...

Big O

The worst case running time, discounting constants and lower order terms.

Example:

 $-n^{3} + 2n$ is O(n³)

Exchange Sort

def exchangeSort(array):
for indx1 in range(len(array)):
 for indx2 in range(indx1, len(array)):
 if (array[indx1] > array[indx2]):
 swap(array, indx1, indx2)

Let's work out the big O running time...

Merge Sort

Given a list, split it into 2 equal piles.

 Then split each of these piles in half.
 Continue to do this until you are left with 1 element in each pile.

Now merge piles back together in order.

Merge Sort

An example of how the merge works: Suppose the first half and second half of an array are sorted:

5 9 10 12 17 1 8 11 20 32

- Merge these by taking a new element from either the first or second subarray, choosing the smallest of the remaining elements.
- Big O running time?

Big O Can Be Misleading

- Big O analysis is concerned with worst case behavior.
- Sometimes we know that we are not dealing with the worst case.

Searching an Array

def search(array, key):
for x in array:
 if x == key:
 return key

Worst case?Best case?

Algorithms Exercise...