
Algorithms

Problems, Algorithms, Programs

� Problem - a well defined task.

– Sort a list of numbers.

– Find a particular item in a list.

– Find a winning chess move.

Algorithms

� A series of precise steps, known to stop
eventually, that solve a problem.

� NOT necessarily tied to computers.

� There can be many algorithms to solve
the same problem.

Characteristics of an Algorithm

� Precise steps.

� Effective steps.

� Has an output.

� Terminates eventually.

Trivial Algorithm

� Computing an average:

– Sum up all of the values.

– Divide the sum by the number of values.

Problems vs. Algorithms vs.

Programs

� There can be many algorithms that
solve the same problem.

� There can be many programs that
implement the same algorithm.

� We are concerned with:
– Analyzing the difficulty of problems.

– Finding good algorithms.

– Analyzing the efficiency of algorithms.

Example: Search

� Search through a list of items for a
particular value.

� Example:
– Search through an array of student records

for the student with ID 12345.

– Search through an array of address
records for the address of the person with
last name Doe.

Linear Search

� If we are searching in a list, start at the
beginning and check each element until
we find the one we want or reach the
end.

� Best case?

� Worst case?

� Average case?

Binary Search

� If we are searching in a sorted list, we
look at the middle item and then choose
which half to continue looking in.

� We continue to cut the area we are
searching in half until we find the value,
or there are no more values to check.

� Best case?

� Worst case?

� Average case? (A little tricky)

Binary Search: Worst Case

� Let’s say the list has1024 items and the
item is the last one we check.
– Check midpoint of 1024 items.

– Check midpoint of upper or lower half
(512).

– Check midpoint of a half of that half (128).

– Successive ranges we are checking have
lengths 64, 32, 16, 8, 4, 2, 1.

– How many checks was that? 10
(log 1024 = 10)

Binary Search

� Aside: Note that binary search only
works if the data in the list are sorted

by the field on which we’re searching!

Classifying Problems

� Problems fall into two categories.

– Computable problems can be solved using

an algorithm.

– Non-computable problems have no

algorithm to solve them.

� Historical note:

– Hilbert’s questions in 1900: complete?

Consistent? Decidable?

Classifying Problems

� Historical note:
– Hilbert posed the following questions in 1900: Is

mathematics complete? Is mathematics

consistent? Is every statement in mathematics

decidable?

– In 1930, he thought the all 3 answers would be

“yes.”

– Almost immediately, Gödel showed that no closed

system can be both complete & consistent.

– By the mid-1930’s, Turing showed that the answer

to the 3rd question is “no.”

Classifying Problems

� Two categories of problems:

– Computable

– Non-computable

� Wouldn’t it be nice to know which
category a problem falls into? (Topic for
later in the week: this problem itself is
non-computable.)

Classifying Computable

Problems

� Tractable

– There is an efficient algorithm to solve the

problem.

� Intractable

– There is an algorithm to solve the problem

but there is no efficient algorithm. (This is

difficult to prove.)

Examples

� Sorting: tractable.

� The traveling salesperson problem:
intractable. (we think…)

� Halting Problem: non-computable.

– (More on this later in the week.)

Measuring Efficiency

� We are (usually) concerned with the
time an algorithm takes to complete.

� We often count the number of times
blocks of code are executed, as a
function of the size of the input.

– Why not measure time directly?

– Why not count the number of instructions

executed?

Example Code:

� If the array has N elements, this function

executes 4 + (2 * N) statements (i.e., 2N + 4).

def aFunction(array):

statementA

statementB

statementC

for x in array:

statementD

statementE

return someValue

Some Mathematical Background

� Let’s see some examples …

Big O

� The worst case running time,
discounting constants and lower order
terms.

� Example:

– n3 + 2n is O(n3)

Exchange Sort

� Let’s work out the big O running time…

def exchangeSort(array):

for indx1 in range(len(array)):

for indx2 in range(indx1, len(array)):

if (array[indx1] > array[indx2]):

swap(array, indx1, indx2)

Merge Sort

� Given a list, split it into 2 equal piles.

� Then split each of these piles in half.
Continue to do this until you are left with
1 element in each pile.

� Now merge piles back together in order.

Merge Sort

� An example of how the merge works:

Suppose the first half and second half of an
array are sorted:

5 9 10 12 17 1 8 11 20 32

� Merge these by taking a new element from
either the first or second subarray, choosing
the smallest of the remaining elements.

� Big O running time?

Big O Can Be Misleading

� Big O analysis is concerned with worst
case behavior.

� Sometimes we know that we are not
dealing with the worst case.

Searching an Array

� Worst case?

� Best case?

def search(array, key):

for x in array:

if x == key:

return key

Algorithms Exercise…

