
Volume

As we have learned, the amplitude of a sound is the main factor in the volume. If the
amplitude of a sound increases or decreases, the volume of a sound increases and
decreases accordingly. To change the volume of a sound, we need to change the
values of the amplitude that are stored in each sample.

Working with samples in a sound

We have seen that to get a sound to work with, we will use a command such as:

𝑠𝑜𝑢𝑛𝑑 = 𝑚𝑎𝑘𝑒𝑆𝑜𝑢𝑛𝑑(𝑝𝑖𝑐𝑘𝐴𝐹𝑖𝑙𝑒())

Just as we used the getAllPixels function to get a list of all of the pixels in a

picture, we can use the getSamples function to get a list of all of the samples in a

sound. If we want to get the value of a particular sample object, we can use the
getSampleValue function, which takes a sample object as input, and returns the
value of that sample (i.e., the measure of the amplitude at that instance). If we
would like to change the value of the sample, we can use the setSampleValue
function, which takes a sample object and a value (between -32768 and 32767) as
parameters, and sets the value of the sample to be the specified value.

For example, suppose we want to increase the volume in a sound. This means the
amplitude of the sound will need to be increased. We can do this in code with the
following function:

Example: Increase Volume

def increaseVolume(sound):

 newSound = duplicateSound(sound)

 for sample in getSamples(newSound):

 value = getSampleValue(sample)

 setSampleValue(sample, value * 2)

 return newSound

Let’s look at what is going on in this function. We pass a sound object into the
function, and then the very first thing we do is duplicate that sound, so that we make
our changes to the copy of the sound. Doing this ensures that we do not modify the
original sound. We then loop through all of the samples in the new sound, getting
the sample value of each, and then changing the value of the sample to be twice as
large.

How do we know this function worked? When we play the original sound, and then
the new sound, we can probably hear that the new sound is louder. We can also

open both sounds using the soundGraph function provided in the Changing

Volume min-lab. We should find that the values in the new sound are double those
in the original.

Another way to check the value of samples is to use the getSampleValueAt

function. This function takes a sound and an index as parameters and returns the
value of the sample at that index in the sound array. We could compare sample
values of the original sound to the new sound by printing particular values, such as
in these examples:

>>> print getSampleValueAt(s, 0)

-315

>>> print getSampleValueAt(newS, 0)

-630

>>> print getSampleValueAt(s, 16730)

-16773

>>> print getSampleValueAt(newS, 16730)

-32768

What happened with the sample value at index 16730? The original sample value
was -16773, but when this was multiplied by 2, it should have been -33546.
Remember, because we are using 16-bit two’s complement representation for the
storage of sample values, the values must range between -32768 and 32767. So this
new sample value has been capped at -32768. This is what’s known as clipping. The
amplitude of the sound gets stopped at the maximum capacity. When this
happened, the sine wave that represents the sound looks squared-off at the peaks,
similar to:

We may also loop through the sound using the range function and the
getNumSamples function. The getNumSamples function takes a sound as input

and returns the number of samples in the sound. (Alternatively, the getLength

function also returns the number of samples in a sound.) The increaseVolume
function would be modified as follows:

Example: Increase volume, version 2

def increaseVolume(sound):

 newSound = duplicateSound(sound)

 for index in range(getNumSamples(newSound)):

 value = getSampleValueAt(newSound, index)

 setSampleValueAt(newSound, index, value * 2)

 return newSound

This method of looping is similar to how we looped over x- and y-values in pictures,
and used those values to get pixels to work with. Here, we use the index to get
sample values to work with.

We should now take some time to experiment with changing volume, by working
through the Mini-Lab: Changing Volume.

Note for future mini-lab or exercises– it would be better to have them write
functions such as changeVolume and increaseAndDecrease and then fade.

http://www.cs.kzoo.edu/cs107/Labs/ChangeVolume.html

