
Encodings

We discussed earlier that a program is written in a specific language, which then
gets translated into a machine language of 0s and 1s. In a little more detail, this
means that everything that is in a program must have a way of being translated into
0s and 1s, including letters, numbers, symbols, pictures, sounds, etc. If everyone
decided on their own way of doing this, it would be very difficult to transport
programs from one machine to another. So, there are standard ways of encoding
data.

Exercise 1: Do a little research (find another book or look it up on the internet) and
find out what ASCII and Unicode are. How are they similar? How are they different?

Exercise 2: Create an appropriately named function which prints the ASCII values of the
letters in your name. My name is Pam, so my function would look like this:

Follow­up Analysis: What is ord? It is a built‐in function in Python that returns the
ordinal (i.e., ASCII) value of a character. The print command tells the computer to
display the value that was returned from this function.

So, we just found that ASCII and Unicode are the standards for encoding characters.
Let’s now turn our attention to encoding pictures.

To begin with, we represent a picture as a grid of tiny pixels (picture elements).

The following example shows an image with a portion greatly enlarged, in which the
individual pixels are rendered as little squares and can be easily seen.

.

def 𝑛𝑎𝑚𝑒𝑇𝑜𝐴𝑆𝐶𝐼𝐼():

𝑝𝑟𝑖𝑛𝑡(𝑜𝑟𝑑(‘𝑃’))

𝑝𝑟𝑖𝑛𝑡(𝑜𝑟𝑑(‘𝑎’))

𝑝𝑟𝑖𝑛𝑡(𝑜𝑟𝑑(‘𝑚’))

"# "" ") %) %) #(*(*(

"" "$ %$ #$ #) *+ *) *+
") "(%& *& (' +$ #)

"* () "$ '& #) #+ '(%'

"" () (& (((# (' (& ()
") %("& (" (((((& ""

"' %" "' () "" "% (' "$

"% "" "' %$ "" (* (# "#
"" "" "* %" "* "& "$ ")

(" ($ () ") %('' *$ *$ '

($ &* "$ '$ #(*& ** *# '

(# &) "& #& +' ++ *+ #* #
(' &* ($ %& #(#& '$ %" '

(& &* && &(&) &+ &) (* "

(+ "& (& &" &# &# &) "& (
(% "((# &) (* (+ (" (+ "

(" (((# "& (* (& (% "% "
(((((+ "% "& (' (+ "* (

Each pixel encodes color for that spot in the picture. There are many encodings for
color. Printers use CMYK (Cyan, Magenta, Yellow, and blacK). Humans often prefer
HSV (Hue, Saturation, and Brightness). We will use the most common for
computers: RGB (Red, Green, and Blue).

In RGB, each color has three component colors: the amount
of red, the amount of green, and the amount of blue. In a
color image, each pixel is typically represented with three
bytes (a byte is 8 bits, or a sequence of 8 0s and 1s) of
storage, one for each of the red, green, and blue components.
This gives us 24 bits of storage per pixel, and 16,777,216
possible different colors.

A small image from a digital camera may have 1280 x 1024 =
1,310,70 pixels. This would have 1,310,720 x 24 =
31,457,280 bits of storage, which is about 31,457,280 / 8 =
(about) 4 MB.

Exercise 3: A grayscale image (black and white) is typically
represented with one byte of storage. How many possible
colors are there?

-

This example shows an image with a small section enlarged, in which the individual
pixels and their RGB values can be seen.

%$ %& #%

%$

%&

%$

%"

(" ("

 ()

 '$

Exercise 4: What are the RGB values for white? What are the RGB values for black?

Pixels and jes4py

We said a picture is represented as a grid of pixels. So, when programming, if we
are going to manipulate the colors in a picture, we need to have a way to work with
each pixel. The jes4py library provides a pixel data type for us that has an x‐ and y‐
position, and R, G, and B values for each pixel. The x‐ and y‐values are similar to
what you would see on a coordinate plane in math, except that the position (0, 0) is
at the top left corner, and then the x‐ and y‐values get larger as you go to the right
and down, respectively.

,

(0,0)

-

Exercise 5: If an image had dimensions 640 x 480, what would the x‐ and y‐values
of the pixel in top right corner be? The bottom left corner? The bottom right
corner?

In the jes4py library, there are a number of functions defined to let us work with
pictures. To find the width and height of a picture, we will use the getWidth and
getHeight functions, respectively. These two functions both require a picture
object as a

Aside: RGB vs Paint

Paint is an applied medium, where the color seen is the result of reflected
light from the “painted surface”. This is broken down into the primary
colors of red, blue, and yellow as seen on printed material. A specific color
can be made by mixing different pigments. RGB are the primary colors
referring to projected light and has no relationship to pigments of paint nor
the mixing of them.

parameter. To get a pixel from a particular picture, we will use the getPixel

function. This function requires a picture, an x‐value, and a y‐value as parameters.

Example: The following code demonstrates how to use the getWidth,
getHeight, and getPixel functions. Suppose that the image chosen has
dimensions 640 x 480.

Exercise 6: Describe which pixels the variables px1 and px2 are storing.

Exercise 7: How would we get the pixel in the middle of the picture?

Once we have a pixel, the jes4py library has functions to return the RGB color
values of the pixel (getRed, getGreen, getBlue), and functions to set the color
values of the pixel (setRed, setGreen, setBlue).

Example: The following code gets a pixel from a picture and prints out its red,
green, and blue values:

Exercise 8: What are the minimum and maximum values that getRed, getGreen,

and getBlue can return?

𝑚𝑦𝐹𝑖𝑙𝑒 = 𝑝𝑖𝑐𝑘𝐴𝐹𝑖𝑙𝑒()
𝑚𝑦𝑃𝑖𝑐𝑡 = 𝑚𝑎𝑘𝑒𝑃𝑖𝑐𝑡𝑢𝑟𝑒(𝑚𝑦𝐹𝑖𝑙𝑒)
𝑤 = 𝑔𝑒𝑡𝑊𝑑𝑖𝑡ℎ(𝑚𝑦𝑃𝑖𝑐𝑡)
𝑝𝑟𝑖𝑛𝑡(𝑤)
ℎ = 𝑔𝑒𝑡𝐻𝑒𝑖𝑔ℎ𝑡(𝑚𝑦𝑃𝑖𝑐𝑡)
𝑝𝑟𝑖𝑛𝑡(ℎ)
𝑝𝑥1 = 𝑔𝑒𝑡𝑃𝑖𝑥𝑒𝑙(𝑚𝑦𝑃𝑖𝑐𝑡, 0, 0)
𝑝𝑥2 = 𝑔𝑒𝑡𝑃𝑖𝑥𝑒𝑙(𝑚𝑦𝑃𝑖𝑐𝑡, 10, 15)

𝑚𝑦𝐹𝑖𝑙𝑒 = 𝑝𝑖𝑐𝑘𝐴𝐹𝑖𝑙𝑒()
𝑚𝑦𝑃𝑖𝑐𝑡 = 𝑚𝑎𝑘𝑒𝑃𝑖𝑐𝑡𝑢𝑟𝑒(𝑚𝑦𝐹𝑖𝑙𝑒)
𝑝𝑥 = 𝑔𝑒𝑡𝑃𝑖𝑥𝑒𝑙(𝑚𝑦𝑃𝑖𝑐𝑡, 10, 15)
𝑟 = 𝑔𝑒𝑡𝑅𝑒𝑑(𝑝𝑥)
𝑝𝑟𝑖𝑛𝑡(𝑟)
𝑔 = 𝑔𝑒𝑡𝐺𝑟𝑒𝑒𝑛(𝑝𝑥)
𝑝𝑟𝑖𝑛𝑡(𝑔)
𝑏 = 𝑔𝑒𝑡𝐵𝑙𝑢𝑒(𝑝𝑥)
𝑝𝑟𝑖𝑛𝑡(𝑏)

Example: The following code gets a pixel from a picture and turns it white:

Exercise 9: Write code to get a pixel from a picture and turn it black.

Drawing on Pictures

The jes4py library provides a number of functions that will draw basic lines and shapes
on top of a picture. Some of these include:

• addLine(picture, x1, y1, x2, y2, color)

• addRect(picture, x, y, w, h, color)

• addRectFilled(picture, x, y, w, h, color)

• addText(picture, x, y, string, color)

• addOval(picture, x1, y1, w, h, color)

• addOvalFilled(picture, x1, y1, w, h, color)

• addArc(picture, x, y, w, h, startAngle, arcAngle, color)

• addArcFilled(picture, x, y, w, h, startAngle, arcAngle, color)

How do these functions work? The addline function takes 6 parameters – a
picture, the x‐ and y‐ coordinates of one end of the line, the x‐ and y‐ coordinates of
the other end of the line, and the color you’d like the line to be. (jes4py has some
predefined colors that you may use, such as red, green, blue, yellow, orange,

magenta, white, and black.) It will then draw the line between these two points
on the specified picture. It does not return anything, but instead, modifies the
original picture.

The addRect function also takes 6 parameters – a picture, x‐ and y‐ coordinates, a
width, a height, and a color. It then draws a rectangle starting at the specified x‐ and
y‐ coordinates that is the specified width, height and color. The top left corner of the
rectangle is the pixel at (x, y).

The addRectFilled function does the same thing as addRect, except that it fills
in the rectangle to make it a solid figure.

The addText function takes 5 parameters – a picture, x‐ and y‐coordinates, some
text, and a color. The text to be displayed must be specified within quotation marks.
The x‐ and y‐coordinates specify a baseline for the text string, similar to the line on a
piece of lined paper. The function will then add the text to the specified picture.

𝑚𝑦𝐹𝑖𝑙𝑒 = 𝑝𝑖𝑐𝑘𝐴𝐹𝑖𝑙𝑒()
𝑚𝑦𝑃𝑖𝑐𝑡 = 𝑚𝑎𝑘𝑒𝑃𝑖𝑐𝑡𝑢𝑟𝑒(𝑚𝑦𝐹𝑖𝑙𝑒)
𝑝𝑥 = 𝑔𝑒𝑡𝑃𝑖𝑥𝑒𝑙(𝑚𝑦𝑃𝑖𝑐𝑡, 10, 15)
𝑠𝑒𝑡𝑅𝑒𝑑(𝑝𝑥, 255)
𝑠𝑒𝑡𝐺𝑟𝑒𝑒𝑛(𝑝𝑥, 255)
𝑠𝑒𝑡𝐵𝑙𝑢𝑒(𝑝𝑥, 255)

The addOval and addOvalFilled functions are similar to the addRect and
addRectFilled, except that the x‐ and y‐coordinates are for the top left corner of
the bounding box of the oval. (See the diagram for what a bounding box is.

The addArc function draws part of a circle, and the addArcFilled function

draws part of a circle and fills it in. You can find more detailed descriptions of the
parameters for these functions in Visual Code. Select a function you want to know
more about, right click, and select Go to Definition. There are several other
drawing functions also described in the media.py file that pops up.

WARNING: DO NOT MODIFY media.py!!!

To draw on a picture, we have two options – we can draw on an empty picture (i.e., a
blank picture), or we can draw on an existing picture. To draw on a blank picture,
we must first make a blank picture by using the makeEmptyPicture function:

pict = makeEmptyPicture(200, 300)

This code would create an empty white picture with dimensions 200 x 300. To get a
blank picture of a different color, a third parameter can be added to the
makeEmptyPicture function, as in:

pict = makeEmptyPicture(200, 300, red)

In the next mini‐lab, we will experiment with drawing on pictures and will gain
additional practice writing and using functions.

Mini‐lab: Drawing Pictures

