Boolean Algebra

Logical Statements

• A proposition that may or may not be true:

- Today is Monday.
- Today is Sunday.
- □ It is raining.

Compound Statements

- More complicated expressions can be built from simpler ones:
 - Today is Monday AND it is raining.
 - Today is Sunday OR it is NOT raining
 - Today is Monday OR today is NOT Monday
 - (This is a tautology)
 - Today is Monday AND today is NOT Monday
 - (This is a contradiction)

The expression *as a whole* is either true or false.

Boolean Algebra

- Boolean Algebra allows us to formalize this sort of reasoning.
- Boolean variables may take one of only two possible values: TRUE or FALSE.
 - □ (or, equivalently, 1 or 0)
- Arithmetic operators: + * /
- Logical operators AND, OR, NOT, XOR

Logical Operators

- A AND B True only when both A and B are true.
- A OR B True unless both A and B are false.
- NOT A True when A is false. False when A is true.
- A XOR B True when either A or B are true, but not when both are true.

R B

A	B	A AND B	Α	B
F	F	F	F	F
F	Т	F	F	Т
Т	F	F	Т	F
Т	Т	Т	Т	Т

A	NOT A
F	Т
Т	F

Writing AND, OR, NOT

- $\blacksquare AANDB = A^B = AB$
- $\blacksquare A OR B = A \lor B = A + B$
- $\blacksquare \text{ NOT } A = \neg A = A'$
- $\blacksquare TRUE = T = 1$
- FALSE = F = 0

Boolean Algebra

- The = in Boolean Algebra indicates equivalence
- Two statements are equivalent if they have exactly the same conditions for being true. (More in a second)
- For example,
 - True = True
 - □ A = A
 - □ (AB)' = (A' + B')

Provide an exhaustive approach to describing when some statement is true (or false)

Μ	R	M'	R'	MR	M + R
F	F				
F	Т				
Т	F				
Т	Т				

Μ	R	M'	R'	MR	M + R
F	F	Т	Т		
F	Т	Т	F		
Т	F	F	Т		
Т	Т	F	F		

Μ	R	M'	R'	MR	M + R
F	F	Т	Т	F	
F	Т	Т	F	F	
Т	F	F	Т	F	
Т	Т	F	F	Т	

Μ	R	M'	R'	MR	M + R
F	F	Т	Т	F	F
F	Т	Т	F	F	Т
Т	F	F	Т	F	Т
Т	Т	F	F	Т	Т

Exercise

■ Write the truth table for (A + B) B

Exercise: (A + B) B

Α	В	$\mathbf{A} + \mathbf{B}$	(A + B) B

Solution to (A + B) B

A	В	$\mathbf{A} + \mathbf{B}$	(A + B) B
F	F	F	F
F	Т	Т	Т
Т	F	Т	F
Т	Т	Т	Т

Note: Truth Tables can be used to *prove* equivalencies. What have we proved in this table?

Solution to (A + B) B

A	В	A + B	(A + B) B
F	F	F	F
F	Т	Т	Т
Т	F	Т	F
Т	Т	Т	Т

Note: Truth Tables can be used to **prove** equivalencies. What have we proved in this table? (A + B) B = B

- A AND ? = A
 - A AND True =?= A
 - A AND False =?= A

- A AND ? = A
 - A AND True = A

A	True	A AND True
F	Т	F
Т	Т	Т

So,what aboutA AND False ?

- A AND ? = A
 - A AND True = A

A	True	A AND True
F	Т	F
Т	Т	Т

So,what about
 A AND False ?
 A AND False = False

A	False	A AND False
F	F	F
Т	F	F

- A OR ? = A
 - A OR True =?= A
 - A OR False =?= A

- A OR ? = A
 - A OR False = A

A	False	A OR False
F	F	F
Т	F	Т

So,what aboutA OR True?

A OR ?=A
A OR False = A

A	False	A OR False
F	F	F
Т	F	Т

So,what about
A OR True?
A OR True = True

A	True	A OR True
F	Т	Т
Т	Т	Т

- A True = A
 A False = False
- $\bullet A \bullet A = A$

- A + True = True
- A + False = A
- $\blacksquare A + A = A$

(A')' = A
A + A' = True
A • A' = False

Commutative, Associative, and Distributive Laws

 $\blacksquare AB = BA$

(Commutative)

- $\blacksquare A + B = B + A$
- $\blacksquare A(BC) = (AB)C$

(Associative)

- $\blacksquare A + (B + C) = (A + B) + C$
- $\blacksquare A (B + C) = (AB) + (AC)$

(Distributive)

■ A + (BC) = (A + B) (A + C)

DeMorgan's Laws