
Programming	with	Functions	
	
In	an	earlier	section,	we	discussed	the	idea	that	a	program	consists	of	an	ordered	
sequence	of	commands	(in	a	specific	language).		When	we	want	to	write	a	program	
to	solve	a	large	complicated	problem,	one	of	the	keys	is	to	break	the	problem	up	into	
smaller,	manageable,	and	reusable	pieces.			We	do	this	through	the	use	of	functions.	
	
Mathematicians	frequently	work	with	functions	such	as	𝑓(𝑥) = 𝑥,	𝑔(𝑥) = 	𝑥!,	
ℎ(𝑥) = sin 𝑥,	and	others.		The	idea	of	a	mathematical	function	is	that	the	value	of	
one	variable	(or	input)	completely	determines	another	value	(the	value,	or	output).		
A	function	is	like	a	machine	–	you	input	some	value,	the	function	performs	some	
calculation	or	operation,	and	then	gives	some	value	back	out.	
	
	 	 	 	 											Function		
	
																	Value Value
 In out
 	
	 	
	
	
When	you	write	a	program,	you	will	also	work	with	functions,	except	they	will	look	
slightly	different	than	these	mathematical	functions.	
	
Let’s	talk	about	the	different	parts	of	the	functions	above.		To	begin	with,	we	
typically	refer	to	functions	by	their	names,	which,	in	the	functions	above,	are	f,	g,	
and	h,	respectively.		In	math,	we	often	use	single	letters	to	represent	names	of	
functions,	but	there	is	no	reason	we	couldn’t	use	words	to	create	more	meaningful	
names,	such	as	𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝑥) = 𝑥,	or	𝑆𝑞𝑢𝑎𝑟𝑒(𝑥) = 	𝑥!	instead	of	f	or	g.		In	
programming,	it	is	very	useful	to	use	meaningful	names.	
	
Now,	what	about	the	part	of	the	function	in	the	parentheses?		In	math,	the	x	is	
usually	referred	to	as	the	independent	variable.		The	actual	value	of	this	variable	is	
what	determines	the	value	that	gets	
output	from	the	function.		In	
programming,	we	will	refer	to	x	as	
the	parameter	of	the	function.		
When	we	call	(or	invoke)	the	
function,	we	will	need	to	specify	a	
value	for	x,	such	as	𝑆𝑞𝑢𝑎𝑟𝑒(2).		This	
value	2	is	called	the	argument	of	the	
function.			
	
	
	

Helpful Hint
	A	parameter	is	the	part	of	the	definition	of	the	
function	that	indicates	what	the	function	must	
receive	when	it	is	used,	or	invoked,	and	an	
argument	is	the	actual	value	that	is	specified	
when	you	are	using,	or	invoking,	a	function.	
	

	
Let’s	see	what	the	function	𝑆𝑞𝑢𝑎𝑟𝑒(𝑥)	would	look	like	in	Python:	
	

def Square (x): (1)
 return x * x (2)
	
Line	(1)	is	referred	to	as	the	function	definition.			Line	(2)	is	the	return	statement,	
and	in	this	example,	also	the	entire	body	of	the	function.		The	body	of	the	function	
consists	of	all	of	the	statements	that	should	be	executed	when	the	function	gets	
called.		In	Python,	the	body	of	the	function	gets	indented.		If	the	function	needs	to	
return	a	value,	the	return	statement	must	be	the	last	statement	in	the	body.		Nothing	
gets	executed	after	the	return	statement.	
	
	
In	general,	when	we	want	to	define	a	function	in	Python,	we	must	start	with	the	
keyword	def,	followed	by	the	name	we	want	to	give	the	function,	followed	by	
parentheses	and	lastly,	a	colon.		Then	we	list	any	parameters	that	the	function	needs	
inside	the	parentheses,	separated	by	commas.	
	
	
Example:	A	function	to	calculate	the	average	of	two	numbers	
	

def average (num1, num2):
 avg = (num1 + num2)/2.0
 return avg

We	would	write	this	function	in	a	Code	cell	in	Google	Colab	and	then	run	the	cell.		
This	will	tell	the	computer	about	the	function,	but	we	would	not	see	anything	
happen.		In	order	to	get	a	result	from	the	function,	we	would	then	invoke	(call)	this	
function	in	a	Code	cell	(the	same	cell	or	another	cell),	by	typing	a	statement	such	as	
average(3, 4).		It	would	look	something	like	this:	
	 	

	
	

We	could	also	use	variables	to	hold	the	values	we	would	like	to	take	the	average	of,	
such	as:	
	

	
	

Notice	that	in	this	example,	the	actual	value	of	the	average	doesn’t	appear	on	the	
screen.		It	is	stored	in	the	variable	averageOfNums.		If	we	wanted	to	see	that	value,	
we	could	add	an	additional	statement:	
	

Exercise:	Identify	the	following	parts	of	the	average	function	in	the	previous	
example:	

a) Name	of	the	function	
b) Parameters	
c) Return	statement	
d) Argument	values	in	the	call	at	(*)	
e) Argument	values	in	the	call	at	(**)	

	
	
In	the	average	function	example,	it	did	not	matter	which	order	the	parameters	or	
arguments	were	specified.		The	two	calls	average(3, 4)	and	average(4, 3)	
would	both	return	the	same	value.		(Test	it	to	convince	yourself!)		This	is	not	the	
case	with	most	functions.		Consider	the	following	example	that	demonstrates	this:	
	

def mathExpression(num1, num2):
 value = num1 * 2 + num2
 return value	
	
What	value	is	returned	from	this	function	with	the	call		

mathExpression(5, 7)?	
	

What	value	is	returned	from	this	function	with	the	call		
mathExpression(7, 5)?	

	
Are	these	values	the	same?		(You	should	have	found	that	they	do	NOT	return	the	
same	values!)	
	
	
So,	in	general,	you	can	specify	
parameters	in	a	function	in	any	order,	
but	when	you	call	the	function,	the	
values	of	the	arguments	must	match	the	
order	in	which	the	parameters	were	
specified.	
	
	
	
	
Here	is	an	additional	example	to	demonstrate	this	idea:	

	
def doStuff(message, num):

 print(message)
 value = num*2
 return value
		
What	happens	when	we	call	this	function	with	doStuff(“Hello”, 10)?		We	see	
the	word	Hello	printed	to	the	screen	and	the	value	20	gets	returned.		Now	what	
happens	when	we	call	this	function	with	doStuff(10, “Hello”)?		Will	anything	
happen?		If	we	walk	through	this,	we	find	that	the	message	parameter	gets	the	
value	10	and	the	num	parameter	gets	the	value	Hello	when	the	function	is	called.		
The	print	statement	will	print	the	value	10	to	the	screen,	but	then	the	program	will	
halt	execution		(i.e.	crash)	when	it	tries	to	multiply	a	non-numerical	value	by	a	
numerical	value.		This	function	won’t	work	if	the	order	of	the	arguments	does	not	
match	the	order	of	the	parameters.	
	
It	is	now	time	to	explore	some	functions	in	Python.		In	this	activity	you	will	gain	
practice	with	using	variables	and	functions	in	Python	by	drawing	different	shapes	
on	images.	
	
Activity:	Using	Functions	
	
	

Helpful Hint
	The	order	of	the	arguments	in	a	call	to	a	
function	must	match	the	order	of	the	
parameters	in	the	function	definition.	
	

